skip to main content

Title: Real-time estimation and correction of quasi-static aberrations in ground-based high contrast imaging systems with high frame-rates
The success of ground-based, high contrast imaging for the detection of exoplanets in part depends on the ability to differentiate between quasi-static speckles caused by aberrations not corrected by adaptive optics (AO) systems, known as non-common path aberrations (NCPAs), and the planet intensity signal. Frazin (ApJ, 2013) introduced a post-processing algorithm demonstrating that simultaneous millisecond exposures in the science camera and wavefront sensor (WFS) can be used with a statistical inference procedure to determine both the series expanded NCPA coefficients and the planetary signal. We demonstrate, via simulation, that using this algorithm in a closed-loop AO system, real-time estimation and correction of the quasi-static NCPA is possible without separate deformable mirror (DM) probes. Thus the use of this technique allows for the removal of the quasi-static speckles that can be mistaken for planetary signals without the need for new optical hardware, improving the efficiency of ground-based exoplanet detection. In our simulations, we explore the behavior of the Frazin Algorithm (FA) and the dependence of its convergence to an accurate estimate on factors such as Strehl ratio, NCPA strength, and number of algorithm search basis functions. We then apply this knowledge to simulate running the algorithm in real-time in a nearly more » ideal setting. We then discuss adaptations that can be made to the algorithm to improve its real-time performance, and show their efficacy in simulation. A final simulation tests the technique’s resilience against imperfect knowledge of the AO residual phase, motivating an analysis of the feasibility of using this technique in a real closed-loop Extreme AO system such as SCExAO or MagAO-X, in terms of computational complexity and the accuracy of the estimated quasi-static NCPA correction. « less
; ; ; ; ; ; ; ;
Award ID(s):
Publication Date:
Journal Name:
Proceedings of the SPIE
Page Range or eLocation-ID:
Sponsoring Org:
National Science Foundation
More Like this
  1. The leading difficulty in achieving the contrast necessary to directly image exoplanets and associated structures (e.g., protoplanetary disks) at wavelengths ranging from the visible to the infrared is quasi-static speckles (QSSs). QSSs are hard to distinguish from planets at the necessary level of precision to achieve high contrast. QSSs are the result of hardware aberrations that are not compensated for by the adaptive optics (AO) system; these aberrations are called non-common path aberrations (NCPAs). In 2013, Frazin showed how simultaneous millisecond telemetry from the wavefront sensor (WFS) and a science camera behind a stellar coronagraph can be used as input into a regression scheme that simultaneously and self-consistently estimates NCPAs and the sought-after image of the planetary system (exoplanetimage). When run in a closed-loop configuration, the WFS measures the corrected wavefront, called theAO residual(AOR)wavefront. The physical principle underlying the regression method is rather simple: when an image is formed at the science camera, the AOR modules both the speckles arising from NCPAs as well as the planetary image. Therefore, the AOR can be used as a probe to estimate NCPA and the exoplanet image via regression techniques. The regression approach is made more difficult by the fact thatmore »the AOR is not exactly known since it can be estimated only from the WFS telemetry. The simulations in the Part I paper provide results on the joint regression on NCPAs and the exoplanet image from three different methods, calledideal,naïve, andbias-correctedestimators. The ideal estimator is not physically realizable (it is useful as a benchmark for simulation studies), but the other two are. The ideal estimator uses true AOR values (available in simulation studies), but it treats the noise in focal plane images via standard linearized regression. Naïve regression uses the same regression equations as the ideal estimator, except that it substitutes the estimated values of the AOR for true AOR values in the regression formulas, which can result in problematic biases (however, Part I provides an example in which the naïve estimate makes a useful estimate of NCPAs). The bias-corrected estimator treats the errors in AOR estimates, but it requires the probability distribution that governs the errors in AOR estimates. This paper provides the regression equations for ideal, naïve, and bias-corrected estimators, as well as a supporting technical discussion.

    « less
  2. One of the top priorities in observational astronomy is the direct imaging and characterization of extrasolar planets (exoplanets) and planetary systems. Direct images of rocky exoplanets are of particular interest in the search for life beyond the Earth, but they tend to be rather challenging targets since they are orders-of-magnitude dimmer than their host stars and are separated by small angular distances that are comparable to the classicalλ<#comment/>/Ddiffraction limit, even for the coming generation of 30 m class telescopes. Current and planned efforts for ground-based direct imaging of exoplanets combine high-order adaptive optics (AO) with a stellar coronagraph observing at wavelengths ranging from the visible to the mid-IR. The primary barrier to achieving high contrast with current direct imaging methods is quasi-static speckles, caused largely by non-common path aberrations (NCPAs) in the coronagraph optical train. Recent work has demonstrated that millisecond imaging, which effectively “freezes” the atmosphere’s turbulent phase screens, should allow the wavefront sensor (WFS) telemetry to be used as a probe of the optical system to measure NCPAs. Starting with a realistic model of a telescope with an AO system and a stellar coronagraph, this paper provides simulations of several closely related regression models that take advantagemore »of millisecond telemetry from the WFS and coronagraph’s science camera. The simplest regression model, called the naïve estimator, does not treat the noise and other sources of information loss in the WFS. Despite its flaws, in one of the simulations presented herein, the naïve estimator provides a useful estimate of an NCPA of∼<#comment/>0.5radian RMS (≈<#comment/>λ<#comment/>/13), with an accuracy of∼<#comment/>0.06radian RMS in 1 min of simulated sky time on a magnitude 8 star. Thebias-corrected estimatorgeneralizes the regression model to account for the noise and information loss in the WFS. A simulation of the bias-corrected estimator with 4 min of sky time included an NCPA of∼<#comment/>0.05radian RMS (≈<#comment/>λ<#comment/>/130) and an extended exoplanet scene. The joint regression of the bias-corrected estimator simultaneously achieved an NCPA estimate with an accuracy of∼<#comment/>5×<#comment/>10−<#comment/>3radian RMS and an estimate of the exoplanet scene that was free of the self-subtraction artifacts typically associated with differential imaging. The5σ<#comment/>contrast achieved by imaging of the exoplanet scene was∼<#comment/>1.7×<#comment/>10−<#comment/>4at a distance of3λ<#comment/>/Dfrom the star and∼<#comment/>2.1×<#comment/>10−<#comment/>5at10λ<#comment/>/D. These contrast values are comparable to the very best on-sky results obtained from multi-wavelength observations that employ both angular differential imaging (ADI) and spectral differential imaging (SDI). This comparable performance is despite the fact that our simulations are quasi-monochromatic, which makes SDI impossible, nor do they have diurnal field rotation, which makes ADI impossible. The error covariance matrix of the joint regression shows substantial correlations in the exoplanet and NCPA estimation errors, indicating that exoplanet intensity and NCPA need to be estimated self-consistently to achieve high contrast.

    « less
  3. A closed-loop control algorithm for the reduction of turbulent flow separation over NACA 0015 airfoil equipped with leading-edge synthetic jet actuators (SJAs) is presented. A system identification approach based on Nonlinear Auto-Regressive Moving Average with eXogenous inputs (NARMAX) technique was used to predict nonlinear dynamics of the fluid flow and for the design of the controller system. Numerical simulations based on URANS equations are performed at Reynolds number of 106 for various airfoil incidences with and without closed-loop control. The NARMAX model for flow over an airfoil is based on the static pressure data, and the synthetic jet actuator is developed using an incompressible flow model. The corresponding NARMAX identification model developed for the pressure data is nonlinear; therefore, the describing function technique is used to linearize the system within its frequency range. Low-pass filtering is used to obtain quasi-linear state values, which assist in the application of linear control techniques. The reference signal signifies the condition of a fully re-attached flow, and it is determined based on the linearization of the original signal during open-loop control. The controller design follows the standard proportional-integral (PI) technique for the single-input single-output system. The resulting closed-loop response tracks the reference value andmore »leads to significant improvements in the transient response over the open-loop system. The NARMAX controller enhances the lift coefficient from 0.787 for the uncontrolled case to 1.315 for the controlled case with an increase of 67.1%.« less
  4. Three-photon microscopy (3PM) was shown to allow deeper imaging than two-photon microscopy (2PM) in scattering biological tissues, such as the mouse brain, since the longer excitation wavelength reduces tissue scattering and the higher-order non-linear excitation suppresses out-of-focus background fluorescence. Imaging depth and resolution can further be improved by aberration correction using adaptive optics (AO) techniques where a spatial light modulator (SLM) is used to correct wavefront aberrations. Here, we present and analyze a 3PM AO system for in vivo mouse brain imaging. We use a femtosecond source at 1300 nm to generate three-photon (3P) fluorescence in yellow fluorescent protein (YFP) labeled mouse brain and a microelectromechanical (MEMS) SLM to apply different Zernike phase patterns. The 3P fluorescence signal is used as feedback to calculate the amount of phase correction without direct phase measurement. We show signal improvement in the cortex and the hippocampus at greater than 1 mm depth and demonstrate close to diffraction-limited imaging in the cortical layers of the brain, including imaging of dendritic spines. In addition, we characterize the effective volume for AO correction within brain tissues, and discuss the limitations of AO correction in 3PM of mouse brain.
  5. In this paper we derive a new capability for robots to measure relative direction, or Angle-of-Arrival (AOA), to other robots, while operating in non-line-of-sight and unmapped environments, without requiring external infrastructure. We do so by capturing all of the paths that a WiFi signal traverses as it travels from a transmitting to a receiving robot in the team, which we term as an AOA profile. The key intuition behind our approach is to emulate antenna arrays in the air as a robot moves freely in 2D or 3D space. The small differences in the phase and amplitude of WiFi signals are thus processed with knowledge of a robots’ local displacements (often provided via inertial sensors) to obtain the profile, via a method akin to Synthetic Aperture Radar (SAR). The main contribution of this work is the development of i) a framework to accommodate arbitrary 2D and 3D trajectories, as well as continuous mobility of both transmitting and receiving robots, while computing AOA profiles between them and ii) an accompanying analysis that provides a lower bound on variance of AOA estimation as a function of robot trajectory geometry that is based on the Cramer Rao Bound and antenna array theory. Thismore »is a critical distinction with previous work on SAR that restricts robot mobility to prescribed motion patterns, does not generalize to the full 3D space, and/or requires transmitting robots to be static during data acquisition periods. In fact, we find that allowing robots to use their full mobility in 3D space while performing SAR, results in more accurate AOA profiles and thus better AOA estimation. We formally characterize this observation as the informativeness of the trajectory; a computable quantity for which we derive a closed form. All theoretical developments are substantiated by extensive simulation and hardware experiments on air/ground robot platforms. Our experimental results bolster our theoretical findings, demonstrating that 3D trajectories provide enhanced and consistent accuracy, with AOA error of less than 10 deg for 95% of trials. We also show that our formulation can be used with an off-the-shelf trajectory estimation sensor (Intel RealSense T265 tracking camera), for estimating the robots’ local displacements, and we provide theoretical as well as empirical results that show the impact of typical trajectory estimation errors on the measured AOA. Finally, we demonstrate the performance of our system on a multi-robot task where a heterogeneous air/ground pair of robots continuously measure AOA profiles over a WiFi link to achieve dynamic rendezvous in an unmapped, 300 square meter environment with occlusions.« less