skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: NARMAX Identification Based Closed-Loop Control of Flow Separation over NACA 0015 Airfoil
A closed-loop control algorithm for the reduction of turbulent flow separation over NACA 0015 airfoil equipped with leading-edge synthetic jet actuators (SJAs) is presented. A system identification approach based on Nonlinear Auto-Regressive Moving Average with eXogenous inputs (NARMAX) technique was used to predict nonlinear dynamics of the fluid flow and for the design of the controller system. Numerical simulations based on URANS equations are performed at Reynolds number of 106 for various airfoil incidences with and without closed-loop control. The NARMAX model for flow over an airfoil is based on the static pressure data, and the synthetic jet actuator is developed using an incompressible flow model. The corresponding NARMAX identification model developed for the pressure data is nonlinear; therefore, the describing function technique is used to linearize the system within its frequency range. Low-pass filtering is used to obtain quasi-linear state values, which assist in the application of linear control techniques. The reference signal signifies the condition of a fully re-attached flow, and it is determined based on the linearization of the original signal during open-loop control. The controller design follows the standard proportional-integral (PI) technique for the single-input single-output system. The resulting closed-loop response tracks the reference value and leads to significant improvements in the transient response over the open-loop system. The NARMAX controller enhances the lift coefficient from 0.787 for the uncontrolled case to 1.315 for the controlled case with an increase of 67.1%.  more » « less
Award ID(s):
1925596
PAR ID:
10287209
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Fluids
Volume:
5
Issue:
3
ISSN:
2311-5521
Page Range / eLocation ID:
100
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Summary This paper presents a control technique for output tracking of reference signals in continuous‐time dynamical systems. The technique is comprised of the following three elements: (i) a fluid‐flow version of the Newton–Raphson method for solving algebraic equations, (ii) a system‐output prediction which has to track the future reference signal, and (iii) a speedup of the control action for enhancing the tracker's accuracy and, in some cases, stabilizing the closed‐loop system. The technique can be suitable for linear and nonlinear systems, implementable by simple algorithms, and can track reference points as well as time‐dependent reference signals. Though inherently local, the tracking controller is proven to have a global convergence for a class of linear systems. The derived theoretical results of the paper include convergence of the tracking controller and error analysis, and are supported by illustrative simulation and laboratory experiments. 
    more » « less
  2. A bio-inspired, passively deployable flap attached to an airfoil by a torsional spring of fixed stiffness can provide significant lift improvements at post-stall angles of attack. In this work, we describe a hybrid active–passive variant to this purely passive flow control paradigm, where the stiffness of the hinge is actively varied in time to yield passive fluid–structure interaction of greater aerodynamic benefit than the fixed-stiffness case. This hybrid active–passive flow control strategy could potentially be implemented using variable-stiffness actuators with less expense compared with actively prescribing the flap motion. The hinge stiffness is varied via a reinforcement-learning-trained closed-loop feedback controller. A physics-based penalty and a long–short-term training strategy for enabling fast training of the hybrid controller are introduced. The hybrid controller is shown to provide lift improvements as high as 136 % and 85 % with respect to the flapless airfoil and the best fixed-stiffness case, respectively. These lift improvements are achieved due to large-amplitude flap oscillations as the stiffness varies over four orders of magnitude, whose interplay with the flow is analysed in detail. 
    more » « less
  3. This paper develops a closed-loop approach for ink-jet 3D printing. The control design is based on a distributed model predictive control scheme, which can handle constraints (such as droplet volume) as well as the large-scale nature of the problem. The high resolution of ink-jet 3D printing make centralized methods extremely time-consuming, thus a distributed implementation of the controller is developed. First a graph-based height evolution model that can capture the liquid flow dynamics is proposed. Then, a scalable closed-loop control algorithm is designed based on the model using Distributed MPC, that reduces computation time significantly. The performance and efficiency of the algorithm are shown to outperform open-loop printing and closed-loop printing with existing Centralized MPC methods through simulation results. 
    more » « less
  4. null (Ed.)
    This paper presents a nonlinear control method, which achieves simultaneous fluid flow velocity control and limit cycle oscillation (LCO) suppression in a flexible airfoil. The proposed control design is based on a dynamic model that incorporates the fluid structure interactions (FSI) in the airfoil. The FSI describe how the flow field velocity at the surface of a flexible structure gives rise to fluid forces acting on the structure. In the proposed control method, the LCO are controlled via control of the flow field velocity near the surface of the airfoil using surface-embedded synthetic jet actuators. Specifically, the flow field velocity profile is driven to a desired time-varying profile, which results in a LCO-stabilizing fluid forcing function acting on the airfoil. A Lyapunov-based stability analysis is used to prove that the active flow control system asymptotically converges to the LCO-stabilizing forcing function that suppresses the LCO. Numerical simulation results are provided to demonstrate the performance of the proposed active flow-and-LCO suppression method. 
    more » « less
  5. We address the problem of synthesizing a controller for nonlinear systems with reach-avoid requirements. Our controller consists of a reference controller and a tracking controller which drives the actual trajectory to follow the reference trajectory. We identify a type of reference trajectory such that the tracking error between the actual trajectory of the closed-loop system and the reference trajectory can be bounded. Moreover, such a bound on the tracking error is independent of the reference trajectory. Using such bounds on the tracking error, we propose a method that can find a reference trajectory by solving a satisfiability problem over linear constraints. Our overall algorithm guarantees that the resulting controller can make sure every trajectory from the initial set of the system satisfies the given reach-avoid requirement. We also implement our technique in a tool FACTEST. We show that FACTEST can find controllers for four vehicle models (3–6 dimensional state space and 2–4 dimensional input space) across eight scenarios (with up to 22 obstacles), all with running time at the sub-second range. 
    more » « less