skip to main content


Title: Using language to discover categories: More nameable features improve category learning
Does the lexicon of a language have consequences for cognition? Here, we provide evidence that the ease with which category features can be named can influence category learning. Across two experiments, participants learned to distinguish images composed of colors (Experiment 1) and shapes (Experiment 2) that were either easy or more difficult to name in English. Holding the category structure constant, when the underlying features of the category were easy to name, participants were faster and more accurate in learning the novel category. We argue that these findings suggest that labels allow learners to form more compact hypotheses, which in turn can be confirmed or disconfirmed in the course of learning. These results have consequences for considering how cross-linguistic differences in lexical inventory affect how readily novel categories are learned.  more » « less
Award ID(s):
1734260
NSF-PAR ID:
10074363
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Proceedings of the 12th International Conference on the Evolution of Language (Evolang12)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The present study tested the hypothesis that verbal labels support category induction by providing compact hypotheses. Ninety‐seven 4‐ to 6‐year‐old children (M = 63.2 months; 46 female, 51 male; 77% White, 8% more than one race, 4% Asian, and 3% Black; tested 2018) and 90 adults (M = 20.1 years; 70 female, 20 male) in the Midwestern United States learned novel categories with features that were easy (e.g., “red”) or difficult (e.g., “mauve”) to name. Adults (d = 1.06) and—to a lesser extent—children (d = 0.57; final training block) learned categories composed of more nameable features better. Children's knowledge of difficult‐to‐name color words predicted their learning for categories with difficult‐to‐name features. Rule‐based category learning may be supported by the emerging ability to form verbal hypotheses.

     
    more » « less
  2. Abstract

    Learning and recognition can be improved by sorting novel items into categories and subcategories. Such hierarchical categorization is easy when it can be performed according to learned rules (e.g., “if car, then automatic or stick shift” or “if boat, then motor or sail”). Here, we present results showing that human participants acquire categorization rules for new visual hierarchies rapidly, and that, as they do, corresponding hierarchical representations of the categorized stimuli emerge in patterns of neural activation in the dorsal striatum and in posterior frontal and parietal cortex. Participants learned to categorize novel visual objects into a hierarchy with superordinate and subordinate levels based on the objects' shape features, without having been told the categorization rules for doing so. On each trial, participants were asked to report the category and subcategory of the object, after which they received feedback about the correctness of their categorization responses. Participants trained over the course of a one‐hour‐long session while their brain activation was measured using functional magnetic resonance imaging. Over the course of training, significant hierarchy learning took place as participants discovered the nested categorization rules, as evidenced by the occurrence of a learning trial, after which performance suddenly increased. This learning was associated with increased representational strength of the newly acquired hierarchical rules in a corticostriatal network including the posterior frontal and parietal cortex and the dorsal striatum. We also found evidence suggesting that reinforcement learning in the dorsal striatum contributed to hierarchical rule learning.

     
    more » « less
  3. Obeid, I. (Ed.)
    The Neural Engineering Data Consortium (NEDC) is developing the Temple University Digital Pathology Corpus (TUDP), an open source database of high-resolution images from scanned pathology samples [1], as part of its National Science Foundation-funded Major Research Instrumentation grant titled “MRI: High Performance Digital Pathology Using Big Data and Machine Learning” [2]. The long-term goal of this project is to release one million images. We have currently scanned over 100,000 images and are in the process of annotating breast tissue data for our first official corpus release, v1.0.0. This release contains 3,505 annotated images of breast tissue including 74 patients with cancerous diagnoses (out of a total of 296 patients). In this poster, we will present an analysis of this corpus and discuss the challenges we have faced in efficiently producing high quality annotations of breast tissue. It is well known that state of the art algorithms in machine learning require vast amounts of data. Fields such as speech recognition [3], image recognition [4] and text processing [5] are able to deliver impressive performance with complex deep learning models because they have developed large corpora to support training of extremely high-dimensional models (e.g., billions of parameters). Other fields that do not have access to such data resources must rely on techniques in which existing models can be adapted to new datasets [6]. A preliminary version of this breast corpus release was tested in a pilot study using a baseline machine learning system, ResNet18 [7], that leverages several open-source Python tools. The pilot corpus was divided into three sets: train, development, and evaluation. Portions of these slides were manually annotated [1] using the nine labels in Table 1 [8] to identify five to ten examples of pathological features on each slide. Not every pathological feature is annotated, meaning excluded areas can include focuses particular to these labels that are not used for training. A summary of the number of patches within each label is given in Table 2. To maintain a balanced training set, 1,000 patches of each label were used to train the machine learning model. Throughout all sets, only annotated patches were involved in model development. The performance of this model in identifying all the patches in the evaluation set can be seen in the confusion matrix of classification accuracy in Table 3. The highest performing labels were background, 97% correct identification, and artifact, 76% correct identification. A correlation exists between labels with more than 6,000 development patches and accurate performance on the evaluation set. Additionally, these results indicated a need to further refine the annotation of invasive ductal carcinoma (“indc”), inflammation (“infl”), nonneoplastic features (“nneo”), normal (“norm”) and suspicious (“susp”). This pilot experiment motivated changes to the corpus that will be discussed in detail in this poster presentation. To increase the accuracy of the machine learning model, we modified how we addressed underperforming labels. One common source of error arose with how non-background labels were converted into patches. Large areas of background within other labels were isolated within a patch resulting in connective tissue misrepresenting a non-background label. In response, the annotation overlay margins were revised to exclude benign connective tissue in non-background labels. Corresponding patient reports and supporting immunohistochemical stains further guided annotation reviews. The microscopic diagnoses given by the primary pathologist in these reports detail the pathological findings within each tissue site, but not within each specific slide. The microscopic diagnoses informed revisions specifically targeting annotated regions classified as cancerous, ensuring that the labels “indc” and “dcis” were used only in situations where a micropathologist diagnosed it as such. Further differentiation of cancerous and precancerous labels, as well as the location of their focus on a slide, could be accomplished with supplemental immunohistochemically (IHC) stained slides. When distinguishing whether a focus is a nonneoplastic feature versus a cancerous growth, pathologists employ antigen targeting stains to the tissue in question to confirm the diagnosis. For example, a nonneoplastic feature of usual ductal hyperplasia will display diffuse staining for cytokeratin 5 (CK5) and no diffuse staining for estrogen receptor (ER), while a cancerous growth of ductal carcinoma in situ will have negative or focally positive staining for CK5 and diffuse staining for ER [9]. Many tissue samples contain cancerous and non-cancerous features with morphological overlaps that cause variability between annotators. The informative fields IHC slides provide could play an integral role in machine model pathology diagnostics. Following the revisions made on all the annotations, a second experiment was run using ResNet18. Compared to the pilot study, an increase of model prediction accuracy was seen for the labels indc, infl, nneo, norm, and null. This increase is correlated with an increase in annotated area and annotation accuracy. Model performance in identifying the suspicious label decreased by 25% due to the decrease of 57% in the total annotated area described by this label. A summary of the model performance is given in Table 4, which shows the new prediction accuracy and the absolute change in error rate compared to Table 3. The breast tissue subset we are developing includes 3,505 annotated breast pathology slides from 296 patients. The average size of a scanned SVS file is 363 MB. The annotations are stored in an XML format. A CSV version of the annotation file is also available which provides a flat, or simple, annotation that is easy for machine learning researchers to access and interface to their systems. Each patient is identified by an anonymized medical reference number. Within each patient’s directory, one or more sessions are identified, also anonymized to the first of the month in which the sample was taken. These sessions are broken into groupings of tissue taken on that date (in this case, breast tissue). A deidentified patient report stored as a flat text file is also available. Within these slides there are a total of 16,971 total annotated regions with an average of 4.84 annotations per slide. Among those annotations, 8,035 are non-cancerous (normal, background, null, and artifact,) 6,222 are carcinogenic signs (inflammation, nonneoplastic and suspicious,) and 2,714 are cancerous labels (ductal carcinoma in situ and invasive ductal carcinoma in situ.) The individual patients are split up into three sets: train, development, and evaluation. Of the 74 cancerous patients, 20 were allotted for both the development and evaluation sets, while the remain 34 were allotted for train. The remaining 222 patients were split up to preserve the overall distribution of labels within the corpus. This was done in hope of creating control sets for comparable studies. Overall, the development and evaluation sets each have 80 patients, while the training set has 136 patients. In a related component of this project, slides from the Fox Chase Cancer Center (FCCC) Biosample Repository (https://www.foxchase.org/research/facilities/genetic-research-facilities/biosample-repository -facility) are being digitized in addition to slides provided by Temple University Hospital. This data includes 18 different types of tissue including approximately 38.5% urinary tissue and 16.5% gynecological tissue. These slides and the metadata provided with them are already anonymized and include diagnoses in a spreadsheet with sample and patient ID. We plan to release over 13,000 unannotated slides from the FCCC Corpus simultaneously with v1.0.0 of TUDP. Details of this release will also be discussed in this poster. Few digitally annotated databases of pathology samples like TUDP exist due to the extensive data collection and processing required. The breast corpus subset should be released by November 2021. By December 2021 we should also release the unannotated FCCC data. We are currently annotating urinary tract data as well. We expect to release about 5,600 processed TUH slides in this subset. We have an additional 53,000 unprocessed TUH slides digitized. Corpora of this size will stimulate the development of a new generation of deep learning technology. In clinical settings where resources are limited, an assistive diagnoses model could support pathologists’ workload and even help prioritize suspected cancerous cases. ACKNOWLEDGMENTS This material is supported by the National Science Foundation under grants nos. CNS-1726188 and 1925494. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation. REFERENCES [1] N. Shawki et al., “The Temple University Digital Pathology Corpus,” in Signal Processing in Medicine and Biology: Emerging Trends in Research and Applications, 1st ed., I. Obeid, I. Selesnick, and J. Picone, Eds. New York City, New York, USA: Springer, 2020, pp. 67 104. https://www.springer.com/gp/book/9783030368432. [2] J. Picone, T. Farkas, I. Obeid, and Y. Persidsky, “MRI: High Performance Digital Pathology Using Big Data and Machine Learning.” Major Research Instrumentation (MRI), Division of Computer and Network Systems, Award No. 1726188, January 1, 2018 – December 31, 2021. https://www. isip.piconepress.com/projects/nsf_dpath/. [3] A. Gulati et al., “Conformer: Convolution-augmented Transformer for Speech Recognition,” in Proceedings of the Annual Conference of the International Speech Communication Association (INTERSPEECH), 2020, pp. 5036-5040. https://doi.org/10.21437/interspeech.2020-3015. [4] C.-J. Wu et al., “Machine Learning at Facebook: Understanding Inference at the Edge,” in Proceedings of the IEEE International Symposium on High Performance Computer Architecture (HPCA), 2019, pp. 331–344. https://ieeexplore.ieee.org/document/8675201. [5] I. Caswell and B. Liang, “Recent Advances in Google Translate,” Google AI Blog: The latest from Google Research, 2020. [Online]. Available: https://ai.googleblog.com/2020/06/recent-advances-in-google-translate.html. [Accessed: 01-Aug-2021]. [6] V. Khalkhali, N. Shawki, V. Shah, M. Golmohammadi, I. Obeid, and J. Picone, “Low Latency Real-Time Seizure Detection Using Transfer Deep Learning,” in Proceedings of the IEEE Signal Processing in Medicine and Biology Symposium (SPMB), 2021, pp. 1 7. https://www.isip. piconepress.com/publications/conference_proceedings/2021/ieee_spmb/eeg_transfer_learning/. [7] J. Picone, T. Farkas, I. Obeid, and Y. Persidsky, “MRI: High Performance Digital Pathology Using Big Data and Machine Learning,” Philadelphia, Pennsylvania, USA, 2020. https://www.isip.piconepress.com/publications/reports/2020/nsf/mri_dpath/. [8] I. Hunt, S. Husain, J. Simons, I. Obeid, and J. Picone, “Recent Advances in the Temple University Digital Pathology Corpus,” in Proceedings of the IEEE Signal Processing in Medicine and Biology Symposium (SPMB), 2019, pp. 1–4. https://ieeexplore.ieee.org/document/9037859. [9] A. P. Martinez, C. Cohen, K. Z. Hanley, and X. (Bill) Li, “Estrogen Receptor and Cytokeratin 5 Are Reliable Markers to Separate Usual Ductal Hyperplasia From Atypical Ductal Hyperplasia and Low-Grade Ductal Carcinoma In Situ,” Arch. Pathol. Lab. Med., vol. 140, no. 7, pp. 686–689, Apr. 2016. https://doi.org/10.5858/arpa.2015-0238-OA. 
    more » « less
  4. null (Ed.)
    Abstract Applied linguistic work claims that multilinguals’ non-native languages interfere with one another based on similarities in cognitive factors like proficiency or age of acquisition. Two experiments explored how trilinguals regulate control of native- and non-native-language words. Experiment 1 tested 46 Dutch–English–French trilinguals in a monitoring task. Participants decided if phonemes were present in the target language name of a picture, phonemes of non-target language translations resulted in longer response times and more false alarms compared to phonemes not present in any translation (Colomé, 2001). The second language (English) interfered more than the first (Dutch) when trilinguals monitored in their third language (French). In Experiment 2, 95 bilinguals learned an artificial language to explore the possibility that the language from which a bilingual learns a third language provides practice managing known-language interference. Language of instruction modulated results, suggesting that learning conditions may reduce interference effects previously attributed to cognitive factors. 
    more » « less
  5. null (Ed.)
    Category learning is fundamental to cognition, but little is known about how it proceeds in real-world environments when learners do not have instructions to search for category-relevant information, do not make overt category decisions, and do not experience direct feedback. Prior research demonstrates that listeners can acquire task-irrelevant auditory categories incidentally as they engage in primarily visuomotor tasks. The current study examines the factors that support this incidental category learning. Three experiments systematically manipulated the relationship of four novel auditory categories with a consistent visual feature (color or location) that informed a simple behavioral keypress response regarding the visual feature. In both an in-person experiment and two online replications with extensions, incidental auditory category learning occurred reliably when category exemplars consistently aligned with visuomotor demands of the primary task, but not when they were misaligned. The presence of an additional irrelevant visual feature that was uncorrelated with the primary task demands neither enhanced nor harmed incidental learning. By contrast, incidental learning did not occur when auditory categories were aligned consistently with one visual feature, but the motor response in the primary task was aligned with another, category-unaligned visual feature. Moreover, category learning did not reliably occur across passive observation or when participants made a category-nonspecific, generic motor response. These findings show that incidental learning of categories is strongly mediated by the character of coincident behavior. 
    more » « less