skip to main content


Title: Understanding the socializer influence on engineering students’ career planning
This research paper describes how engineering juniors and seniors perceive the influence of socializers on their post-graduation career planning. Grounded in Expectancy x Value Theory (EVT), this qualitative investigation is part of a sequential mixed-methods study that included two survey phases and an interview phase. An exploratory analysis of 72 interview excerpts revealed four dominant socializer groups, namely, family, peers, university related individuals, and work related individuals, as well as three distinct areas of socializer influence: thinking about specific jobs, job exploration in general, and choosing whether to pursue further education. A closer look showed that while parents, peers, professors, and supervisors were all important to students’ career plans, the type of influence each had tended to differ. In-depth examples of socializer influence and their impact on students’ job related decisions are shared in this paper. The results are insightful for researchers, university and industry stakeholders, and students.  more » « less
Award ID(s):
1360958
NSF-PAR ID:
10074793
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
American Society for Engineering Education Annual Conference, Salt Lake City, UT, June 24-27, 2018
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Graduate training often takes a monodisciplinary approach that is not informed by best practices, ignores the needs and preferences of students, and overlooks the increasingly interdisciplinary and international nature of research. This is unfortunate, particularly since graduate education that is fully integrated with interdisciplinary research can help students become part of a trained and diverse workforce equipped to meet society’s many challenges. Against this backdrop, a National Science Foundation Research Traineeship (NRT) program is being established at the University of Kentucky leveraging the most effective instruments for the training of STEM professionals, such as network-based graduate student mentoring and career preparation encompassing both technical and professional skillsets. Briefly, the training graduate students will receive – in a way that is fully integrated with the research they perform – includes: 1) tools such as individual development plans and developmental network maps; 2) a multi-departmental and interdisciplinary course on research-related content; 3) a seminar course on transferrable skills (ethics, research, communication, teaching, mentoring, entrepreneurship, teamwork, management, leadership, outreach, etc.); 4) a certificate to be awarded once students complete the two courses above and garner additional credits from an interdisciplinary curriculum of research-related courses; 5) summer internships at other departments and at external institutions (other universities, industry, national laboratories) nationwide or abroad; 6) an annual research-related symposium including all elements of a scientific conference; 7) internal collaborative research grants for participants to fund and pursue their own ideas; 8) fields trips to facilities related to the research; and 9) coaching on job hunting as well as résumé, motivation letter and interview preparation. Since a workforce equipped to meet society’s challenges must be both well trained and diverse, multiple initiatives will ensure that this NRT will broaden participation in STEM. Recruitment-wise, close collaboration with a number of entities will provide this NRT with a broad recruitment pool of talented and diverse students. Moreover, collaboration with these entities will provide trainees with ample opportunities to acquire, practice and refine their professional skills, as trainees present their results and recruit in conferences, meetings and outreach events organized by these entities, become members and/or join their leadership, and expand their professional and mentoring network in the process. In addition, minority trainees will be surveyed periodically to probe their feelings of well-being, preparation, acceptance, belonging and distress, as well as their perception of how well structured their departments and programs are. According to recent literature, these factors determine whether or not they perform (i.e., publish) at rates comparable to their male majority peers. Saliently, the evaluation of the educational model employed will afford a comprehensive understanding not only of the academy components that were more utilized and impactful, but will reveal the individual mentoring and skill-building facets of the program driving its successful implementation. The evaluation plan includes outcomes, performance measures, an evaluation timetable, benchmarks and a description of how formative evaluation will improve practice, the evaluation process also extending to research activities. 
    more » « less
  2. null (Ed.)
    This study focuses on a new engineering program in a rural, liberal arts university. The engineering program has a number of veteran, underrepresented minority, transfer, and nontraditional students. Many students are also first-generation college students. The institution and engineering program matriculate a number of under-served populations, students who may have needs that are not well understood in the typical engineering education literature. Due to the unique nature of this program, exploring the social capital networks of the students in the first four years of the program will offer insight into the students in this context. This study will use Lin’s model of social capital as a framework. Social capital can be defined as the resources that are gained from relationships, or “it’s not what you know, it’s who you know”. The knowledge that is found within a student’s social network are a form of capital. Students must not only have people within their network that provide cultural, economic, and human capital, but also be able to access those resources and be able to purposely activate those resources. The instrument used in this survey is based on Martin’s work with the Name and Resource Generator as adapted by Boone in work focusing on first-generation college students. In this instrument, students are asked to name up to eight people who have had an influence on their engineering-related decisions. They are asked to provide some background on each person, including their relationship, what they know of the person’s career and educational background, and how long they have known this person. Students may offer as little as one or as many as eight influencers. Additionally, students are asked to list relationships of people who have provided them with a number of resources related to engineering knowledge, activities, and advice. The department and especially the first-year curricular requirements and extracurricular offerings have been designed using a community of practice model. It is hoped that as part of the focus on creating this community within engineering that all students’ networks will expand to include faculty, peers, and others within the engineering community of practice. Faculty and peers within the school of engineering will be identified and will be an additional focus of this study. At this time, analysis has begun on a subset of the survey responses. Initial results are consistent with social capital literature, finding that first-generation college students are more likely to have smaller networks focusing on family, with one student in the study listing a single person as having an impact on their engineering decisions. Most students have also listed at least one faculty or peer at the university as well. Results presented will include typical network analysis to understand how the students in this unique context compare to published studies. We will also generate map of student networks focusing on department-specific connections including peers and faculty. Additional results of interest include discrepancies between the interview and the follow-up survey. 
    more » « less
  3. Broadening participation in engineering is critical given the gap between the nation’s need for engineering graduates and its production of them. Efforts to spark interest in engineering among PreK-12 students have increased substantially in recent years as a result. However, past research has demonstrated that interest is not always sufficient to help students pursue engineering majors, particularly for rural students. In many rural communities, influential adults (family, friends, teachers) are often the primary influence on career choice, while factors such as community values, lack of social and cultural capital, limited course availability, and inadequate financial resources act as potential barriers. To account for these contextual factors, this project shifts the focus from individual students to the communities to understand how key stakeholders and organizations support engineering as a major choice and addresses the following questions: RQ1. What do current undergraduate engineering students who graduated from rural high schools describe as influences on their choice to attend college and pursue engineering as a post-secondary major? RQ2. How does the college choice process differ for rural students who enrolled in a 4-year university immediately after graduating from high school and those who transferred from a 2-year institution? RQ3. How do community members describe the resources that serve as key supports as well as the barriers that hinder support in their community? RQ4. What strategies do community members perceive their community should implement to enhance their ability to support engineering as a potential career choice? RQ5. How are these supports transferable or adaptable by other schools? What community-level factors support or inhibit transfer and adaptation? To answer the research questions, we employed a three-phase qualitative study. Phase 1 focused on understanding the experiences and perceptions of current [University Name] students from higher-producing rural schools. Analysis of focus group and interview data with 52 students highlighted the importance of interest and support from influential adults in students’ decision to major in engineering. One key finding from this phase was the importance of community college for many of our participants. Transfer students who attended community college before enrolling at [University Name] discussed the financial influences on their decision and the benefits of higher education much more frequently than their peers. In Phase 2, we used the findings from Phase 1 to conduct interviews within the participants’ home communities. This phase helped triangulate students’ perceptions with the perceptions and practices of others, and, equally importantly, allowed us to understand the goals, attitudes, and experiences of school personnel and local community members as they work with students. Participants from the students’ home communities indicated that there were few opportunities for students to learn more about engineering careers and provided suggestions for how colleges and universities could be more involved with students from their community. Phase 3, scheduled for Spring 2020, will bring the findings from Phases 1 and 2 back to rural communities via two participatory design workshops. These workshops, designed to share our findings and foster collaborative dialogue among the participants, will enable us to explore factors that support or hinder transfer of findings and to identify policies and strategies that would enhance each community’s ability to support engineering as a potential career choice. 
    more » « less
  4. Employment outcomes for autistic 1 individuals are often poorer relative to their neurotypical (NT) peers, resulting in a greater need for other forms of financial and social support. While a great deal of work has focused on developing interventions for autistic children, relatively less attention has been paid to directly addressing the employment challenges faced by autistic adults. One key impediment to autistic individuals securing employment is the job interview. Autistic individuals often experience anxiety in interview situations, particularly with open-ended questions and unexpected interruptions. They also exhibit atypical gaze patterns that may be perceived as, but not necessarily indicative of, disinterest or inattention. In response, we developed a closed-loop adaptive virtual reality (VR)–based job interview training platform, which we have named Career Interview Readiness in VR (CIRVR). CIRVR is designed to provide an engaging, adaptive, and individualized experience to practice and refine interviewing skills in a less anxiety-inducing virtual context. CIRVR contains a real-time physiology-based stress detection module, as well as a real-time gaze detection module, to permit individualized adaptation. We also present the first prototype of the CIRVR Dashboard, which provides visualizations of data to help autistic individuals as well as potential employers and job coaches make sense of the data gathered from interview sessions. We conducted a feasibility study with 9 autistic and 8 NT individuals to assess the preliminary usability and feasibility of CIRVR. Results showed differences in perceived usability of the system between autistic and NT participants, and higher levels of stress in autistic individuals during interviews. Participants across both groups reported satisfaction with CIRVR and the structure of the interview. These findings and feedback will support future work in improving CIRVR’s features in hopes for it to be a valuable tool to support autistic job candidates as well as their potential employers. 
    more » « less
  5. null (Ed.)
    The value of internship experiences for engineering students is widely discussed in the literature. With this analysis, we seek to contribute knowledge addressing 1) the prevalence of internship experiences amongst engineering students drawn from a large, multi-institutional, nationally-representative sample, 2) if the likelihood of having an engineering internship experiences is equitable amongst various student identities, and 3) what additional factors influence the likelihood of a student having an internship experience, such as field of study and institution type. Data were drawn from a 2015 multi-institutional nationally representative survey of engineering juniors and seniors, excluding one institution with a mandatory co-op program (n = 5530 from 26 institutions). A z-test was used to analyze differences in internship participation rates related to academic cohort (e.g., junior, senior), gender, underrepresented minority (URM) status, first-generation, and low-income status, as well as a subset of identities at the intersection of these groups (gender + URM; first-generation + low-income). A logistic regression model further examined factors such as GPA, engineering task self-efficacy, field of engineering, and institution type. We found that amongst the students in our dataset, 64.7% of the seniors had “worked in a professional engineering environment as an intern/co-op” (41.1% of juniors, 64.7% of 5th years). Significantly less likely (p<0.05) to have internship experiences were men compared to women (52.9% vs 58.3%), URM students compared to their majority counterparts (41.5% vs 56.8%), first-generation students compared to continuing (47.6% vs 57.2%), and low-income students compared to higher-income peers (46.2% vs 57.4%). Examined intersectional identities significantly less likely to have an internship were URM men (37.5%) and first-generation low-income students (42.0%), while non-URM women (60.5%) and continuing high-income students (58.2%) were most likely to report having an internship. Results from the logistic regression model indicate that significant factors are cohort (junior vs senior), GPA, engineering task self-efficacy, and engineering field. When controlling for the other variables in the model, gender, URM, first-generation, and low-income status remain significant; however, the interaction effect between these identities is not significant in the full model. Institution type did not have much impact. Having a research experience was not a significant factor in predicting the likelihood of having an internship experience, although studying abroad significantly increased the odds. Amongst engineering fields, industrial and civil engineering students were the most likely to have an internship, while aerospace and materials engineering students were the least likely. Full results and discussion will be presented in the paper. This analysis provides valuable information for a variety of stakeholders. For engineering programs, it is useful to benchmark historic students’ rates of internship participation against a multi-institutional, nationally representative dataset. For academic advisors and career services professionals, it is useful to understand in which fields an internship is common to be competitive on the job market, and which fields have fewer opportunities or prioritize research experiences. Ultimately, for those in higher education and workforce development it is vital to understand which identities, and intersectional identities, are accessing internship experiences as a pathway into the engineering workforce. 
    more » « less