skip to main content

Title: Dusty Space Plasma Diagnosis Using the Behavior of Polar Mesospheric Summer Echoes During Electron Precipitation Events: DUST CHARGING PROCESS IN SPACE
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Space Physics
Page Range / eLocation ID:
p. 7697-7709
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This perspective article discusses the knowledge gaps and open questions regarding the solar and interplanetary drivers of space weather conditions experienced at Mars during active and quiescent solar periods, and the need for continuous, routine observations to address them. For both advancing science and as part of the strategic planning for human exploration at Mars by the late 2030s, now is the time to consider a network of upstream space weather monitors at Mars. Our main recommendations for the heliophysics community are the following: 1. Support the advancement for understanding heliophysics and space weather science at ∼1.5 AU and continue the support of planetary science payloads and missions that provide such measurements. 2. Prioritize an upstream Mars L1 monitor and/or areostationary orbiters for providing dedicated, continuous observations of solar activity and interplanetary conditions at ∼1.5 AU. 3. Establish new or support existing 1) joint efforts between federal agencies and their divisions and 2) international collaborations to carry out #1 and #2. 
    more » « less
  2. ABSTRACT We perform a cosmic shear analysis in harmonic space using the first year of data collected by the Dark Energy Survey (DES-Y1). We measure the cosmic weak lensing shear power spectra using the metacalibration catalogue and perform a likelihood analysis within the framework of CosmoSIS. We set scale cuts based on baryonic effects contamination and model redshift and shear calibration uncertainties as well as intrinsic alignments. We adopt as fiducial covariance matrix an analytical computation accounting for the mask geometry in the Gaussian term, including non-Gaussian contributions. A suite of 1200 lognormal simulations is used to validate the harmonic space pipeline and the covariance matrix. We perform a series of stress tests to gauge the robustness of the harmonic space analysis. Finally, we use the DES-Y1 pipeline in configuration space to perform a similar likelihood analysis and compare both results, demonstrating their compatibility in estimating the cosmological parameters S8, σ8, and Ωm. We use the DES-Y1 metacalibration shape catalogue, with photometric redshifts estimates in the range of 0.2−1.3, divided in four tomographic bins finding σ8(Ωm/0.3)0.5 = 0.766 ± 0.033 at 68 per cent CL. The methods implemented and validated in this paper will allow us to perform a consistent harmonic space analysis in the upcoming DES data. 
    more » « less