skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Dynamic Incentives in Wait List Mechanisms
Many scarce public resources are allocated through wait lists that use priorities for individual agents. A new priority system for allocating deceased donor kidneys was adopted in 2014. This redesign was guided by simulations that held decision-rules fixed. We synthesize recent theoretical results to show that the welfare effects of a mechanism depend on the interaction between dynamic incentives and heterogeneity in preferences. We show evidence suggesting that patient decisions on the deceased donor kidney wait list respond to dynamic incentives. Therefore, an empirical approach to dynamic mechanism design is an essential complement to mechanism design theory in dynamic environments.  more » « less
Award ID(s):
1729090
PAR ID:
10074936
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
AEA Papers and Proceedings
Volume:
108
ISSN:
2574-0768
Page Range / eLocation ID:
341 to 47
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Waitlists are often used to ration scarce resources, but the trade‐offs in designing these mechanisms depend on agents' preferences. We study equilibrium allocations under alternative designs for the deceased donor kidney waitlist. We model the decision to accept an organ or wait for a preferable one as an optimal stopping problem and estimate preferences using administrative data from the New York City area. Our estimates show that while some kidney types are desirable for all patients, there is substantial match‐specific heterogeneity in values. We then develop methods to evaluate alternative mechanisms, comparing their effects on patient welfare to an equivalent change in donor supply. Past reforms to the kidney waitlist primarily resulted in redistribution, with similar welfare and organ discard rates to the benchmark first‐come, first‐served mechanism. These mechanisms and other commonly studied theoretical benchmarks remain far from optimal. We design a mechanism that increases patient welfare by the equivalent of an 18.2% increase in donor supply. 
    more » « less
  2. Purpose: The equitable distribution of donor kidneys is crucial to maximizing transplant success rates and addressing disparities in healthcare data. This study examines potential gender bias in the Deceased Donor Organ Allocation Model (DDOA) by using machine learning and AI to analyze its impact on kidney discard decisions to ensure fairness in accordance with medical ethics. Methods: The study employs the Deceased Donor Organ Allocation Model (DDOA) model (https://ddoa.mst.hekademeia.org/#/kidney) to predict the discard probability of deceased donor kidneys using donor characteristic from the OPTN Deceased Donor Dataset (2016-2023). Using the SRTR SAF dictionary, the dataset consists of 18,029 donor records, where gender was assessed for its effect on discard probability. ANOVA and t-test determines whether there is a statistically significant difference between the discard percentages for female and male donors by changing the donor gender data alone. If the p-value obtained from the t-test is less than the significance level (typically 0.05), we reject the null hypothesis and conclude that there is a significant difference. Otherwise, we fail to reject the null hypothesis. Results: Figure 1 visualizes the differences in discard percentages between female and male donor kidneys, with an unbiased allocation system expected to show no difference (i.e., a value of zero). To assess the presence of gender bias, statistical analyses, including t-tests and ANOVA were performed. The t-test comparing female and male kidney discard rates yielded a t-statistic of 29.690228, with a p-value of 3.586956e-189 < 0.05 significance threshold. This result leads to the rejection of the null hypothesis, indicating a significant difference was found between the mean when altering only the donor gender attribute in the DDOA model making it play a significant role in discard decisions. Conclusions: The study highlights that a significant difference was found between the mean by altering only the donor gender attribute, contributing to kidney discard rates in the DDOA model. These findings reinforce the need for greater transparency in organ allocation models and a reconsideration of the demographic criteria used in the evaluation process. Future research should refine algorithms to minimize biases in organ allocation and investigate kidney discard disparities in transplantation. 
    more » « less
  3. While the mechanism design paradigm emphasizes notions of efficiency based on agent preferences, policymakers often focus on alternative objectives. School districts emphasize educational achievement, and transplantation communities focus on patient survival. It is unclear whether choice‐based mechanisms perform well when assessed based on these outcomes. This paper evaluates the assignment mechanism for allocating deceased donor kidneys on the basis of patient life‐years from transplantation (LYFT). We examine the role of choice in increasing LYFT and compare realized assignments to benchmarks that remove choice. Our model combines choices and outcomes in order to study how selection affects LYFT. We show how to identify and estimate the model using instruments derived from the mechanism. The estimates suggest that the design in use selects patients with better post‐transplant survival prospects and matches them well, resulting in an average LYFT of 9.29, which is 1.75 years more than a random assignment. However, the maximum aggregate LYFT is 14.08. Realizing the majority of the gains requires transplanting relatively healthy patients, who would have longer life expectancies even without a transplant. Therefore, a policymaker faces a dilemma between transplanting patients who are sicker and those for whom life will be extended the longest. 
    more » « less
  4. null (Ed.)
    Motivated by kidney exchange, we study the following mechanism-design problem: On a directed graph (of transplant compatibilities among patient--donor pairs), the mechanism must select a simple path (a chain of transplantations) starting at a distinguished vertex (an altruistic donor) such that the total length of this path is as large as possible (a maximum number of patients receive a kidney). However, the mechanism does not have direct access to the graph. Instead, the vertices are partitioned over multiple players (hospitals), and each player reports a subset of her vertices to the mechanism. In particular, a player may strategically omit vertices to increase how many of her vertices lie on the path returned by the mechanism. Our objective is to find mechanisms that limit incentives for such manipulation while producing long paths. Unfortunately, in worst-case instances, competing with the overall longest path is impossible while incentivizing (approximate) truthfulness, i.e., requiring that hiding nodes cannot increase a player's utility by more than a factor of 1 + o(1). We therefore adopt a semi-random model where o(n) random edges are added to worst-case instances. While it remains impossible for truthful mechanisms to compete with the overall longest path, we give a truthful mechanism that competes with a weaker but non-trivial benchmark: the length of any path whose subpaths within each player have a minimum average length. In fact, our mechanism satisfies even a stronger notion of truthfulness, which we call matching-time incentive compatibility. This notion of truthfulness requires that each player not only reports her nodes truthfully but also does not stop the returned path at any of her nodes in order to divert it to a continuation inside her own subgraph. 
    more » « less
  5. Kidney exchange, where candidates with organ failure trade incompatible but willing donors, is a life-saving alternative to the deceased donor waitlist, which has inadequate supply to meet demand. While fielded kidney exchanges see huge benefit from altruistic kidney donors (who give an organ without a paired needy candidate), a significantly higher medical risk to the donor deters similar altruism with livers. In this paper, we begin by exploring the idea of large-scale liver exchange, and show on demographically accurate data that vetted kidney exchange algorithms can be adapted to clear such an exchange at the nationwide level. We then propose cross-organ donation where kidneys and livers can be bartered for each other. We show theoretically that this multi-organ exchange provides linearly more transplants than running separate kidney and liver exchanges. This linear gain is a product of altruistic kidney donors creating chains that thread through the liver pool; it exists even when only a small but constant portion of the donors on the kidney side of the pool are willing to donate a liver lobe. We support this result experimentally on demographically accurate multi-organ exchanges. We conclude with thoughts regarding the fielding of a nationwide liver or joint liver-kidney exchange from a legal and computational point of view. 
    more » « less