skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Data Security and Privacy for Outsourced Data in the Cloud
Although outsourcing data to cloud storage has become popular, the increasing concerns about data security and privacy in the cloud limits broader cloud adoption. Ensuring data security and privacy, therefore, is crucial for better and broader adoption of the cloud. This tutorial provides a comprehensive analysis of the state-of-the-art in the context of data security and privacy for outsourced data. We aim to cover common security and privacy threats for outsourced data, and relevant novel schemes and techniques with their design choices regarding security, privacy, functionality, and performance. Our explicit focus is on recent schemes from both the database and the cryptography and security communities that enable query processing over encrypted data and access oblivious cloud storage systems.  more » « less
Award ID(s):
1649469
PAR ID:
10074991
Author(s) / Creator(s):
;
Date Published:
Journal Name:
34th IEEE International Conference on Data Engineering, ICDE 2018
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Although outsourcing data to cloud storage has become popular, the increasing concerns about data security and privacy in the cloud blocks broader cloud adoption. Recent efforts have developed oblivious storage systems to hide both the data content and the data access patterns from an untrusted cloud provider. These systems have shown great progress in improving the efficiency of oblivious accesses. However, these systems mainly focus on privacy without considering fault-tolerance of different system components. This makes prior proposals impractical for cloud applications that require 24/7 availability. In this demonstration, we propose Pharos, the Privacy Hazards of Replicating ORAM Stores. We aim to highlight the data access pattern privacy hazards of naively applying common database replication and operation execution techniques such as locking and asymmetric quorums. 
    more » « less
  2. Many applications deployed to public clouds are concerned about the confidentiality of their outsourced data, such as financial services and electronic patient records. A plausible solution to this problem is homomorphic encryption (HE), which supports certain algebraic operations directly over the ciphertexts. The downside of HE schemes is their significant, if not prohibitive, performance overhead for data-intensive workloads that are very common for outsourced databases, or database-as-a-serve in cloud computing. The objective of this work is to mitigate the performance overhead incurred by the HE module in outsourced databases. To that end, this paper proposes a radix-based parallel caching optimization for accelerating the performance of homomorphic encryption (HE) of outsourced databases in cloud computing. The key insight of the proposed optimization is caching selected radix-ciphertexts in parallel without violating existing security guarantees of the primitive/base HE scheme. We design the radix HE algorithm and apply it to both batch- and incremental-HE schemes; we demonstrate the security of those radix-based HE schemes by showing that the problem of breaking them can be reduced to the problem of breaking their base HE schemes that are known IND-CPA (i.e. Indistinguishability under Chosen-Plaintext Attack). We implement the radix-based schemes as middleware of a 10-node Cassandra cluster on CloudLab; experiments on six workloads show that the proposed caching can boost state-of-the-art HE schemes, such as Paillier and Symmetria, by up to five orders of magnitude. 
    more » « less
  3. As the adoption of cloud storage service has been pervasive, more and more attentions have been paid to the related security and privacy risks, among which, data access pattern privacy is an important aspect. Lots of solutions have been proposed, but most are infeasible due to high overheads in communication and storage. In this paper, we propose a new solution to address the limitations by leveraging the moderate storage capacity in the increasingly popular cloud storage gate-ways and the existence of multiple competing and independent cloud storage servers. Extensive analysis and evaluation have shown that, our proposed system can simultaneously attain the features of provable protection of data access pattern, low data query delay, low server storage overhead, low communication costs, and accountability 
    more » « less
  4. null (Ed.)
    Data outsourcing is a promising technical paradigm to facilitate cost-effective real-time data storage, processing, and dissemination. In such a system, a data owner proactively pushes a stream of data records to a third-party cloud server for storage, which in turn processes various types of queries from end users on the data owner’s behalf. This paper considers outsourced multi-version key-value stores that have gained increasing popularity in recent years, where a critical security challenge is to ensure that the cloud server returns both authentic and fresh data in response to end users’ queries. Despite several recent attempts on authenticating data freshness in outsourced key-value stores, they either incur excessively high communication cost or can only offer very limited real-time guarantee. To fill this gap, this paper introduces KV-Fresh, a novel freshness authentication scheme for outsourced key-value stores that offers strong real-time guarantee. KV-Fresh is designed based on a novel data structure, Linked Key Span Merkle Hash Tree, which enables highly efficient freshness proof by embedding chaining relationship among records generated at different time. Detailed simulation studies using a synthetic dataset generated from real data confirm the efficacy and efficiency of KV-Fresh. 
    more » « less
  5. Data outsourcing is a promising technical paradigm to facilitate cost-effective real-time data storage, processing, and dissemination. In such a system, a data owner proactively pushes a stream of data records to a third-party cloud server for storage, which in turn processes various types of queries from end users on the data owner’s behalf. This paper considers outsourced multi-version key-value stores that have gained increasing popularity in recent years, where a critical security challenge is to ensure that the cloud server returns both authentic and fresh data in response to end users’ queries. Despite several recent attempts on authenticating data freshness in outsourced key value stores, they either incur excessively high communication cost or can only offer very limited real-time guarantee. To fill this gap, this paper introduces KV-Fresh, a novel freshness authentication scheme for outsourced key-value stores that offers strong real-time guarantee. KV-Fresh is designed based on a novel data structure, Linked Key Span Merkle Hash Tree, which enables highly efficient freshness proof by embedding chaining relationship among records generated at different time. Detailed simulation studies using a synthetic dataset generated from real data confirm the efficacy and efficiency of KV-Fresh. 
    more » « less