skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Efficient and Accountable Oblivious Cloud Storage with Three Servers
As the adoption of cloud storage service has been pervasive, more and more attentions have been paid to the related security and privacy risks, among which, data access pattern privacy is an important aspect. Lots of solutions have been proposed, but most are infeasible due to high overheads in communication and storage. In this paper, we propose a new solution to address the limitations by leveraging the moderate storage capacity in the increasingly popular cloud storage gate-ways and the existence of multiple competing and independent cloud storage servers. Extensive analysis and evaluation have shown that, our proposed system can simultaneously attain the features of provable protection of data access pattern, low data query delay, low server storage overhead, low communication costs, and accountability  more » « less
Award ID(s):
1844591
PAR ID:
10128999
Author(s) / Creator(s):
;
Date Published:
Journal Name:
2019 IEEE Conference on Communications and Network Security (CNS)
Page Range / eLocation ID:
37 to 45
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. IntroductionBig graphs like social network user interactions and customer rating matrices require significant computing resources to maintain. Data owners are now using public cloud resources for storage and computing elasticity. However, existing solutions do not fully address the privacy and ownership protection needs of the key involved parties: data contributors and the data owner who collects data from contributors. MethodsWe propose a Trusted Execution Environment (TEE) based solution: TEE-Graph for graph spectral analysis of outsourced graphs in the cloud. TEEs are new CPU features that can enable much more efficient confidential computing solutions than traditional software-based cryptographic ones. Our approach has several unique contributions compared to existing confidential graph analysis approaches. (1) It utilizes the unique TEE properties to ensure contributors' new privacy needs, e.g., the right of revocation for shared data. (2) It implements efficient access-pattern protection with a differentially private data encoding method. And (3) it implements TEE-based special analysis algorithms: the Lanczos method and the Nystrom method for efficiently handling big graphs and protecting confidentiality from compromised cloud providers. ResultsThe TEE-Graph approach is much more efficient than software crypto approaches and also immune to access-pattern-based attacks. Compared with the best-known software crypto approach for graph spectral analysis, PrivateGraph, we have seen that TEE-Graph has 103−105times lower computation, storage, and communication costs. Furthermore, the proposed access-pattern protection method incurs only about 10%-25% of the overall computation cost. DiscussionOur experimentation showed that TEE-Graph performs significantly better and has lower costs than typical software approaches. It also addresses the unique ownership and access-pattern issues that other TEE-related graph analytics approaches have not sufficiently studied. The proposed approach can be extended to other graph analytics problems with strong ownership and access-pattern protection. 
    more » « less
  2. Although outsourcing data to cloud storage has become popular, the increasing concerns about data security and privacy in the cloud blocks broader cloud adoption. Recent efforts have developed oblivious storage systems to hide both the data content and the data access patterns from an untrusted cloud provider. These systems have shown great progress in improving the efficiency of oblivious accesses. However, these systems mainly focus on privacy without considering fault-tolerance of different system components. This makes prior proposals impractical for cloud applications that require 24/7 availability. In this demonstration, we propose Pharos, the Privacy Hazards of Replicating ORAM Stores. We aim to highlight the data access pattern privacy hazards of naively applying common database replication and operation execution techniques such as locking and asymmetric quorums. 
    more » « less
  3. null (Ed.)
    Oblivious Random Access Machine (ORAM) allows a client to hide the access pattern and thus, offers a strong level of privacy for data outsourcing. An ideal ORAM scheme is expected to offer desirable properties such as low client bandwidth, low server computation overhead, and the ability to compute over encrypted data. S3ORAM (CCS’17) is an efficient active ORAM scheme, which takes advantage of secret sharing to provide ideal properties for data outsourcing such as low client bandwidth, low server computation and low delay. Despite its merits, S3ORAM only offers security in the semi-honest setting. In practice, an ORAM protocol is likely to operate in the presence of malicious adversaries who might deviate from the protocol to compromise the client privacy. In this paper, we propose MACAO, a new multi-server ORAM framework, which offers integrity, access pattern obliviousness against active adversaries, and the ability to perform secure computation over the accessed data. MACAO harnesses authenticated secret sharing techniques and tree-ORAM paradigm to achieve low client communication, efficient server computation, and low storage overhead at the same time. We fully implemented MACAO and conducted extensive experiments in real cloud platforms (Amazon EC2) to validate the performance of MACAO compared with the state-of-the-art. Our results indicate that MACAO can achieve comparable performance to S3ORAM while offering security against malicious adversaries. MACAO is a suitable candidate for integration into distributed file systems with encrypted computation capabilities towards enabling an oblivious functional data outsourcing infrastructure. 
    more » « less
  4. The rapid development of three-dimensional (3D) acquisition technology based on 3D sensors provides a large volume of data, which are often represented in the form of point clouds. Point cloud representation can preserve the original geometric information along with associated attributes in a 3D space. Therefore, it has been widely adopted in many scene-understanding-related applications such as virtual reality (VR) and autonomous driving. However, the massive amount of point cloud data aggregated from distributed 3D sensors also poses challenges for secure data collection, management, storage, and sharing. Thanks to the characteristics of decentralization and security, Blockchain has great potential to improve point cloud services and enhance security and privacy preservation. Inspired by the rationales behind the software-defined network (SDN) technology, this paper envisions SAUSA, a Blockchain-based authentication network that is capable of recording, tracking, and auditing the access, usage, and storage of 3D point cloud datasets in their life-cycle in a decentralized manner. SAUSA adopts an SDN-inspired point cloud service architecture, which allows for efficient data processing and delivery to satisfy diverse quality-of-service (QoS) requirements. A Blockchain-based authentication framework is proposed to ensure security and privacy preservation in point cloud data acquisition, storage, and analytics. Leveraging smart contracts for digitizing access control policies and point cloud data on the Blockchain, data owners have full control of their 3D sensors and point clouds. In addition, anyone can verify the authenticity and integrity of point clouds in use without relying on a third party. Moreover, SAUSA integrates a decentralized storage platform to store encrypted point clouds while recording references of raw data on the distributed ledger. Such a hybrid on-chain and off-chain storage strategy not only improves robustness and availability, but also ensures privacy preservation for sensitive information in point cloud applications. A proof-of-concept prototype is implemented and tested on a physical network. The experimental evaluation validates the feasibility and effectiveness of the proposed SAUSA solution. 
    more » « less
  5. Because cloud storage services have been broadly used in enterprises for online sharing and collaboration, sensitive information in images or documents may be easily leaked outside the trust enterprise on-premises due to such cloud services. Existing solutions to this problem have not fully explored the tradeoffs among application performance, service scalability, and user data privacy. Therefore, we propose CloudDLP, a generic approach for enterprises to automatically sanitize sensitive data in images and documents in browser-based cloud storage. To the best of our knowledge, CloudDLP is the first system that automatically and transparently detects and sanitizes both sensitive images and textual documents without compromising user experience or application functionality on browser-based cloud storage. To prevent sensitive information escaping from on-premises, CloudDLP utilizes deep learning methods to detect sensitive information in both images and textual documents. We have evaluated the proposed method on a number of typical cloud applications. Our experimental results show that it can achieve transparent and automatic data sanitization on the cloud storage services with relatively low overheads, while preserving most application functionalities. 
    more » « less