skip to main content


Title: Mapping the Invocation Structure of Online Political Interaction
The surge in political information, discourse, and interaction has been one of the most important developments in social media over the past several years. There is rich structure in the interaction among different viewpoints on the ideological spectrum. However, we still have only a limited analytical vocabulary for expressing the ways in which these viewpoints interact. In this paper, we develop network-based methods that operate on the ways in which users share content; we construct invocation graphs on Web domains showing the extent to which pages from one domain are invoked by users to reply to posts containing pages from other domains. When we locate the domains on a political spectrum induced from the data, we obtain an embedded graph showing how these interaction links span different distances on the spectrum. The structure of this embedded network, and its evolution over time, helps us derive macro-level insights about how political interaction unfolded through 2016, leading up to the US Presidential election. In particular, we find that the domains invoked in replies spanned increasing distances on the spectrum over the months approaching the election, and that there was clear asymmetry between the left-to-right and right-to-left patterns of linkage.  more » « less
Award ID(s):
1741441
PAR ID:
10075217
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Proceedings of the 2018 World Wide Web Conference
Page Range / eLocation ID:
629 - 638
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Political news is often slanted toward its publisher’s ideology and seeks to influence readers by focusing on selected aspects of contentious social and political issues. We investigate political slants in news and their influence on readers by analyzing election-related news and reader reactions to the news on Twitter. To this end, we collected election-related news from six major US news publishers who covered the 2020 US presidential elections. We computed each publisher’s political slant based on the favorability of its news toward the two major parties’ presidential candidates. We found that the election-related news coverage shows signs of political slant both in news headlines and on Twitter. The difference in news coverage of the two candidates between the left-leaning (LEFT) and right-leaning (RIGHT) news publishers is statistically significant. The effect size is larger for the news on Twitter than for headlines. And, news on Twitter expresses stronger sentiments than the headlines. We identified moral foundations in reader reactions to the news on Twitter based on Moral Foundation Theory. Moral foundations in readers’ reactions to LEFT and RIGHT differ statistically significantly, though the effects are small. Further, these shifts in moral foundations differ across social and political issues. User engagement on Twitter is higher for RIGHT than for LEFT. We posit that an improved understanding of slant and influence can enable better ways to combat online political polarization. 
    more » « less
  2. The prevalence and spread of online misinformation during the 2020 US presidential election served to perpetuate a false belief in widespread election fraud. Though much research has focused on how social media platforms connected people to election-related rumors and conspiracy theories, less is known about the search engine pathways that linked users to news content with the potential to undermine trust in elections. In this paper, we present novel data related to the content of political headlines during the 2020 US election period. We scraped over 800,000 headlines from Google's search engine results pages (SERP) in response to 20 election-related keywords—10 general (e.g., "Ballots") and 10 conspiratorial (e.g., "Voter fraud")—when searched from 20 cities across 16 states. We present results from qualitative coding of 5,600 headlines focused on the prevalence of delegitimizing information. Our results reveal that videos (as compared to stories, search results, and advertisements) are the most problematic in terms of exposing users to delegitimizing headlines. We also illustrate how headline content varies when searching from a swing state, adopting a conspiratorial search keyword, or reading from media domains with higher political bias. We conclude with policy recommendations on data transparency that allow researchers to continue to monitor search engines during elections. 
    more » « less
  3. Budak, Ceren ; Cha, Meeyoung ; Quercia, Daniele ; Xie, Lexing (Ed.)
    We present the first large-scale measurement study of cross-partisan discussions between liberals and conservatives on YouTube, based on a dataset of 274,241 political videos from 973 channels of US partisan media and 134M comments from 9.3M users over eight months in 2020. Contrary to a simple narrative of echo chambers, we find a surprising amount of cross-talk: most users with at least 10 comments posted at least once on both left-leaning and right-leaning YouTube channels. Cross-talk, however, was not symmetric. Based on the user leaning predicted by a hierarchical attention model, we find that conservatives were much more likely to comment on left-leaning videos than liberals on right-leaning videos. Secondly, YouTube's comment sorting algorithm made cross-partisan comments modestly less visible; for example, comments from conservatives made up 26.3% of all comments on left-leaning videos but just over 20% of the comments were in the top 20 positions. Lastly, using Perspective API's toxicity score as a measure of quality, we find that conservatives were not significantly more toxic than liberals when users directly commented on the content of videos. However, when users replied to comments from other users, we find that cross-partisan replies were more toxic than co-partisan replies on both left-leaning and right-leaning videos, with cross-partisan replies being especially toxic on the replier's home turf. 
    more » « less
  4. When one searches for political candidates on Google, a panel composed of recent news stories, known as Top stories, is commonly shown at the top of the search results page. These stories are selected by an algorithm that chooses from hundreds of thousands of articles published by thousands of news publishers. In our previous work, we identified 56 news sources that contributed 2/3 of all Top stories for 30 political candidates running in the primaries of 2020 US Presidential Election. In this paper, we survey US voters to elicit their familiarity and trust with these 56 news outlets. We find that some of the most frequent outlets are not familiar to all voters (e.g. The Hill or Politico), or particularly trusted by voters of any political stripes (e.g. Washington Examiner or The Daily Beast). Why then, are such sources shown so frequently in Top stories? We theorize that Google is sampling news articles from sources with different political leanings to offer a balanced coverage. This is reminiscent of the so-called “fairness doctrine” (1949-1987) policy in the United States that required broadcasters (radio or TV stations) to air contrasting views about controversial matters. Because there are fewer right-leaning publications than center or left-leaning ones, in order to maintain this “fair” balance, hyper-partisan far-right news sources of low trust receive more visibility than some news sources that are more familiar to and trusted by the public. 
    more » « less
  5. Previous research has documented the existence of both online echo chambers and hostile intergroup interactions. In this paper, we explore the relationship between these two phenomena by studying the activity of 5.97M Reddit users and 421M comments posted over 13 years. We examine whether users who are more engaged in echo chambers are more hostile when they comment on other communities. We then create a typology of relationships between political communities based on whether their users are toxic to each other, whether echo chamber-like engagement with these communities has a polarizing effect, and on the communities' political leanings. We observe both the echo chamber and hostile intergroup interaction phenomena, but neither holds universally across communities. Contrary to popular belief, we find that polarizing and toxic speech is more dominant between communities on the same, rather than opposing, sides of the political spectrum, especially on the left; however, this mostly points to the collective targeting of political outgroups.

     
    more » « less