skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Do Diffusion Protocols Govern Cascade Growth?
Large cascades can develop in online social networks as people share information with one another. Though simple reshare cascades have been studied extensively, the full range of cascading behaviors on social media is much more diverse. Here we study how diffusion protocols, or the social exchanges that enable information transmission, affect cascade growth, analogous to the way communication protocols define how information is transmitted from one point to another. Studying 98 of the largest information cascades on Facebook, we find a wide range of diffusion protocols - from cascading reshares of images, which use a simple protocol of tapping a single button for propagation, to the ALS Ice Bucket Challenge, whose diffusion protocol involved individuals creating and posting a video, and then nominating specific others to do the same. We find recurring classes of diffusion protocols, and identify two key counterbalancing factors in the construction of these protocols, with implications for a cascade's growth: the effort required to participate in the cascade, and the social cost of staying on the sidelines. Protocols requiring greater individual effort slow down a cascade's propagation, while those imposing a greater social cost of not participating increase the cascade's adoption likelihood. The predictability of transmission also varies with protocol. But regardless of mechanism, the cascades in our analysis all have a similar reproduction number (≈1.8), meaning that lower rates of exposure can be offset with higher per-exposure rates of adoption. Last, we show how a cascade's structure can not only differentiate these protocols, but also be modeled through branching processes. Together, these findings provide a framework for understanding how a wide variety of information cascades can achieve substantial adoption across a network.  more » « less
Award ID(s):
1741441
PAR ID:
10075228
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Proceedings of the ... International AAAI Conference on Weblogs and Social Media
ISSN:
2334-0770
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Cremonini, Marco (Ed.)
    Understanding the spread of false or dangerous beliefs—often called misinformation or disinformation—through a population has never seemed so urgent. Network science researchers have often taken a page from epidemiologists, and modeled the spread of false beliefs as similar to how a disease spreads through a social network. However, absent from those disease-inspired models is an internal model of an individual’s set of current beliefs, where cognitive science has increasingly documented how the interaction between mental models and incoming messages seems to be crucially important for their adoption or rejection. Some computational social science modelers analyze agent-based models where individuals do have simulated cognition, but they often lack the strengths of network science, namely in empirically-driven network structures. We introduce a cognitive cascade model that combines a network science belief cascade approach with an internal cognitive model of the individual agents as in opinion diffusion models as a public opinion diffusion (POD) model, adding media institutions as agents which begin opinion cascades. We show that the model, even with a very simplistic belief function to capture cognitive effects cited in disinformation study (dissonance and exposure), adds expressive power over existing cascade models. We conduct an analysis of the cognitive cascade model with our simple cognitive function across various graph topologies and institutional messaging patterns. We argue from our results that population-level aggregate outcomes of the model qualitatively match what has been reported in COVID-related public opinion polls, and that the model dynamics lend insights as to how to address the spread of problematic beliefs. The overall model sets up a framework with which social science misinformation researchers and computational opinion diffusion modelers can join forces to understand, and hopefully learn how to best counter, the spread of disinformation and “alternative facts.” 
    more » « less
  2. We transform historically observed line outages in a power transmission network into an influence graph that statistically describes how cascades propagate in the power grid. The influence graph can predict the critical lines that are historically most involved in cascading propagation. After upgrading these critical lines, simulating the influence graph suggests that these upgrades could mitigate large blackouts by reducing the probability of large cascades. 
    more » « less
  3. Complex contagion models have been developed to understand a wide range of social phenomena such as adoption of cultural fads, the diffusion of belief, norms, and innovations in social networks, and the rise of collective action to join a riot. Most existing works focus on contagions where individuals’ states are represented by binary variables, and propagation takes place over a single isolated network. However, characterization of an individual’s standing on a given matter as a binary state might be overly simplistic as most of our opinions, feelings, and perceptions vary over more than two states. Also, most real-world contagions take place over multiple networks (e.g., Twitter and Facebook) or involve multiplex networks where individuals engage in different types of relationships (e.g., co-worker, family, etc.). To this end, this paper studies multi-stage complex contagions that take place over multi-layer or multiplex networks. Under a linear threshold based contagion model, we first give analytic results for the expected size of global cascades, i.e., cases where a randomly chosen node can initiate a propagation that eventually reaches a positive fraction of the whole population. Then, analytic results are confirmed by an extensive numerical study. In addition, we demonstrate how the dynamics of complex contagions is affected by the structural properties of the networks. In particular, we reveal an interesting connection between the assortativity of a network and the impact of hyper-active nodes on the cascade size. 
    more » « less
  4. Effectively modeling and predicting the information cascades is at the core of understanding the information diffusion, which is essential for many related downstream applications, such as fake news detection and viral marketing identification. Conventional methods for cascade prediction heavily depend on the hypothesis of diffusion models and hand-crafted features. Owing to the significant recent successes of deep learning in multiple domains, attempts have been made to predict cascades by developing neural networks based approaches. However, the existing models are not capable of capturing both the underlying structure of a cascade graph and the node sequence in the diffusion process which, in turn, results in unsatisfactory prediction performance. In this paper, we propose a deep multi-task learning framework with a novel design of shared-representation layer to aid in explicitly understanding and predicting the cascades. As it turns out, the learned latent representation from the shared-representation layer can encode the structure and the node sequence of the cascade very well. Our experiments conducted on real-world datasets demonstrate that our method can significantly improve the prediction accuracy and reduce the computational cost compared to state-of-the-art baselines. 
    more » « less
  5. The last decade has seen an explosion in the number of new secure multi-party computation (MPC) protocols that enable collaborative computation on sensitive data. No single MPC protocol is optimal for all types of computation. As a result, researchers have created hybrid-protocol compilers that translate a program into a hybrid protocol that mixes different MPC protocols. Hybrid-protocol compilers crucially rely on accurate cost models, which are handwritten by the compilers' developers, to choose the correct schedule of protocols. In this paper, we propose CostCO, the first automatic MPC cost modeling framework. CostCO develops a novel API to interface with a variety of MPC protocols, and leverages domain-specific properties of MPC in order to enable efficient and automatic cost-model generation for a wide range of MPC protocols. CostCO employs a two-phase experiment design to efficiently synthesize cost models of the MPC protocol's runtime as well as its memory and network usage. We verify CostCO's modeling accuracy for several full circuits, characterize the engineering effort required to port existing MPC protocols, and demonstrate how hybrid-protocol compilers can leverage CostCO's cost models. 
    more » « less