skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Can an influence graph driven by outage data determine transmission line upgrades that mitigate cascading blackouts?
We transform historically observed line outages in a power transmission network into an influence graph that statistically describes how cascades propagate in the power grid. The influence graph can predict the critical lines that are historically most involved in cascading propagation. After upgrading these critical lines, simulating the influence graph suggests that these upgrades could mitigate large blackouts by reducing the probability of large cascades.  more » « less
Award ID(s):
1735513 1735354
PAR ID:
10081642
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
2018 IEEE International Conference on Probabilistic Methods Applied to Power Systems (PMAPS)
Page Range / eLocation ID:
1 to 6
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Earthquakes cause outages of power transmission system components due to direct physical damage and also through the initiation of cascading processes. This article explores what are the optimal capacity investments to increase the resilience of electric power transmission systems to earthquakes and how those investments change with respect to two issues: (1) the impact of including cascades in the investment optimization model and (2) the impact of focusing more heavily on the early stages of the outages after the earthquake in contrast to more evenly focusing on outages across the entire restoration process. A cascading outage model driven by the statistics of sample utility data is developed and used to locate the cascading lines. We compare the investment plans with and without the modeling of the cascades and with different levels of importance attached to outages that occur during different periods of the restoration process. Using a case study of the Eastern Interconnect transmission grid, where the seismic hazard stems mostly from the New Madrid Seismic Zone, we find that the cascades have little effect on the optimal set of capacity enhancement investments. However, the cascades do have a significant impact on the early stages of the restoration process. Also, the cascading lines can be far away from the initial physically damaged lines. More broadly, the early stages of the earthquake restoration process is affected by the extent of the cascading outages and is critical for search and rescue as well as restoring vital services. Also, we show that an investment plan focusing more heavily on outages in the first 3 days after the earthquake yields fewer outages in the first month, but more outages later in comparison with an investment plan focusing uniformly on outages over an entire 6-month restoration process. 
    more » « less
  2. Security concerns have been raised about cascading failure risks in evolving power grids. This paper reveals, for the first time, that the risk of cascading failures can be increased at low network demand levels when considering security-constrained generation dispatch. This occurs because critical transmission cor- ridors become very highly loaded due to the presence of central- ized generation dispatch, e.g., large thermal plants far from de- mand centers. This increased cascading risk is revealed in this work by incorporating security-constrained generation dispatch into the risk assessment and mitigation of cascading failures. A se- curity-constrained AC optimal power flow, which considers eco- nomic functions and security constraints (e.g., network con- straints, 𝑵 − 𝟏 security, and generation margin), is used to pro- vide a representative day-ahead operational plan. Cascading fail- ures are simulated using two simulators, a quasi-steady state DC power flow model, and a dynamic model incorporating all fre- quency-related dynamics, to allow for result comparison and ver- ification. The risk assessment procedure is illustrated using syn- thetic networks of 200 and 2,000 buses. Further, a novel preventive mitigation measure is proposed to first identify critical lines, whose failures are likely to trigger cascading failures, and then to limit power flow through these critical lines during dispatch. Results show that shifting power equivalent to 1% of total demand from critical lines to other lines can reduce cascading risk by up to 80%. 
    more » « less
  3. With increased focus on historically excluded populations, there have been recent calls for HCI research methods to more adequately acknowledge and address the historical context of racism, sexism, gendered racism, epistemic violence, classism, and so on. In this article, we utilize Black feminist epistemologies to serve as critical frameworks for understanding the historical context that reveals the interconnected systems of power that mutually influence one another to create unequal outcomes or social inequalities for different populations. Leveraging Black feminist thought (BFT) and intersectionality as critical social theories of design praxis, we introduce intersectional analysis of power—a method that enables HCI researchers, designers, and practitioners to identify and situate saturated sites of violence in a historical context and to transform the ways in which they engage with populations that have been historically oppressed. Engaging in self-reflection as researchers, we apply an intersectional analysis of power to co-design technologies with community street outreach workers who address violence in their predominantly Black communities. We: (1) identify the saturated site of violence; (2) identify the intersecting systems of power and who holds power (past and present); (3) describe the “conceptual glue” that binds these intersecting systems together and the assumption(s) that those who hold power are employing to guide their interactions; (4) examine the ways in which Black people are subjugated, surveilled, and/or expected to assimilate to “normative” ways of being and behaving; and (5) identify acts of resistance. This article contributes an alternative to traditional HCI and design methods that falsely perpetuate a lens of neutrality and colorblindness that centers on whiteness, innovation, and capitalism and ignores the history of State-sanctioned violence and structural oppression. 
    more » « less
  4. Abstract Several very large high‐impact fires burned nearly 4,000 km2of mesic forests in western Oregon during September 7–9, 2020. While infrequent, very large high‐severity fires have occurred historically in western Oregon, the extreme nature of this event warrants analyses of climate and meteorological drivers. A strong blocking pattern led to an intrusion of dry air and strong downslope east winds in the Oregon Cascades following a warm‐dry 60‐day period that promoted widespread fuel flammability. Viewed independently, both the downslope east winds and fuel dryness were extreme, but not unprecedented. However, the concurrence of these drivers resulted in compound extremes and impacts unmatched in the observational record. We additionally find that most large wildfires in western Oregon since 1900 have similarly coincided with warm‐dry summers during at least moderate east wind events. These results reinforce the importance of incorporating a multivariate lens for compound extremes in assessing wildfire hazard risk. 
    more » « less
  5. Boosting critical infrastructures’ (CIs) preparedness to threats, including natural disasters and manmade attacks, is a global imperative. The intrinsic dependencies and interdependencies between CIs hinder their resiliency. Moreover, the evolution of CIs is, in many cases, en routè to tighten those interdependencies. The goal of this paper is to uncover and analyze the rising interdependency between the electric power grid, information and communication technology (ICT) networks, and transportation systems that are heavily reliant on electric-power drivetrains, collectively referred to hereafter as electro-mobility (e-mobility). E-mobility includes electric vehicles (EVs) and electric railway systems. A new influence graph-based model is introduced, as a promising approach to model operational interdependencies between CIs. Each of the links of the influence graph represents the probability of failure of the sink node following a failure of the source node. A futuristic scenario has been analyzed assuming increased dependency of the power grid on ICT for monitoring and control, and high penetration levels of EVs and distributed energy resources (DERs) in an urban region. Inspecting the influence graph shows that the impact of interdependency between the power grid, the ICT network, and the transportation network, for the case study analyzed in this paper, does not lead to failures during normal operation with proper design; however, it is severe during emergency conditions since it leads to failure propagation among the three CIs. This paper sets the stage for more research on this topic, and calls for more attention to interdependency analysis. 
    more » « less