skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Security, Privacy, and Access Control in Information-Centric Networking: A Survey
Information-centric networking (ICN) replaces the widely used host-centric networking paradigm in communication networks (e.g., Internet and mobile ad hoc networks) with an information-centric paradigm, which prioritizes the delivery of named content, oblivious of the contents' origin. Content and client security, provenance, and identity privacy are intrinsic by design in the ICN paradigm as opposed to the current host centric paradigm where they have been instrumented as an afterthought. However, given its nascency, the ICN paradigm has several open security and privacy concerns. In this paper, we survey the existing literature in security and privacy in ICN and present open questions. More specifically, we explore three broad areas: 1) security threats; 2) privacy risks; and 3) access control enforcement mechanisms. We present the underlying principle of the existing works, discuss the drawbacks of the proposed approaches, and explore potential future research directions. In security, we review attack scenarios, such as denial of service, cache pollution, and content poisoning. In privacy, we discuss user privacy and anonymity, name and signature privacy, and content privacy. ICN's feature of ubiquitous caching introduces a major challenge for access control enforcement that requires special attention. We review existing access control mechanisms including encryption-based, attribute-based, session-based, and proxy re-encryption-based access control schemes. We conclude the survey with lessons learned and scope for future work.  more » « less
Award ID(s):
1719342
PAR ID:
10075603
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
IEEE Communications surveys and tutorials
Volume:
20
Issue:
1
ISSN:
1553-877X
Page Range / eLocation ID:
566 - 600
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Wide Area Measurement Systems (WAMS) use an underlying communication network to collect and analyze data from devices in the power grid, aimed to improve grid operations. For WAMS to be effective, the communication network needs to support low packet latency and low packet losses. Internet Protocol (IP), the pervasive technology used in today’s communication networks uses loop-free best-paths for data forwarding, which increases the load on these paths causing delays and losses in delivery. Information-Centric Networking (ICN), a new networking paradigm, designed to enable a data-centric information sharing, natively supports the concurrent use of multiple transmission interfaces, in-networking caching, as well as per-packet security and can provide better application support. In this paper, we present , an ICN-based network architecture for wide area smart grid communications. We demonstrate through simulations that achieves low latency and 100% data delivery even during network congestion by leveraging multiple available paths; thus significantly improving communication resiliency in comparison to an IP-based approach. can be used immediately on today’s Internet as an overlay. 
    more » « less
  2. Pervasive IoT applications enable us to perceive, analyze, control, and optimize the traditional physical systems. Recently, security breaches in many IoT applications have indicated that IoT applications may put the physical systems at risk. Severe resource constraints and insufficient security design are two major causes of many security problems in IoT applications. As an extension of the cloud, the emerging edge computing with rich resources provides us a new venue to design and deploy novel security solutions for IoT applications. Although there are some research efforts in this area, edge-based security designs for IoT applications are still in its infancy. This paper aims to present a comprehensive survey of existing IoT security solutions at the edge layer as well as to inspire more edge-based IoT security designs. We first present an edge-centric IoT architecture. Then, we extensively review the edge-based IoT security research efforts in the context of security architecture designs, firewalls, intrusion detection systems, authentication and authorization protocols, and privacy-preserving mechanisms. Finally, we propose our insight into future research directions and open research issues. 
    more » « less
  3. Named Data Networking (NDN) is a prominent realization of the vision of Information-Centric Networking. The NDN architecture adopts name-based routing and location-independent data retrieval. Among other important features, NDN integrates security mechanisms and focuses on protecting the content rather than the communications channels. Along with a new architecture come new threats and NDN is no exception. NDN is a potential target for new network attacks such as Interest Flooding Attacks (IFAs). Attackers take advantage of IFA to launch (D)DoS attacks in NDN. Many IFA detection and mitigation solutions have been proposed in the literature. However, there is no comprehensive review study of these solutions that has been proposed so far. Therefore, in this paper, we propose a survey of the various IFAs with a detailed comparative study of all the relevant proposed solutions as counter-measures against IFAs. We also review the requirements for a complete and efficient IFA solution and pinpoint the various issues encountered by IFA detection and mitigation mechanisms through a series of attack scenarios. Finally, in this survey, we offer an analysis of the open issues and future research directions regarding IFAs. 
    more » « less
  4. With the proliferation of Beyond 5G (B5G) communication systems and heterogeneous networks, mobile broadband users are generating massive volumes of data that undergo fast processing and computing to obtain actionable insights. While analyzing this huge amount of data typically involves machine and deep learning-based data-driven Artificial Intelligence (AI) models, a key challenge arises in terms of providing privacy assurances for user-generated data. Even though data-driven techniques have been widely utilized for network traffic analysis and other network management tasks, researchers have also identified that applying AI techniques may often lead to severe privacy concerns. Therefore, the concept of privacy-preserving data-driven learning models has recently emerged as a hot area of research to facilitate model training on large-scale datasets while guaranteeing privacy along with the security of the data. In this paper, we first demonstrate the research gap in this domain, followed by a tutorial-oriented review of data-driven models, which can be potentially mapped to privacy-preserving techniques. Then, we provide preliminaries of a number of privacy-preserving techniques (e.g., differential privacy, functional encryption, Homomorphic encryption, secure multi-party computation, and federated learning) that can be potentially adopted for emerging communication networks. The provided preliminaries enable us to showcase the subset of data-driven privacy-preserving models, which are gaining traction in emerging communication network systems. We provide a number of relevant networking use cases, ranging from the B5G core and Radio Access Networks (RANs) to semantic communications, adopting privacy-preserving data-driven models. Based on the lessons learned from the pertinent use cases, we also identify several open research challenges and hint toward possible solutions. 
    more » « less
  5. The software-defined networking (SDN) paradigm promises greater control and understanding of enterprise network activities, particularly for management applications that need awareness of network-wide behavior. However, the current focus on switch-based SDNs raises concerns about data-plane scalability, especially when using fine-grained flows. Further, these switch-centric approaches lack visibility into end-host and application behaviors, which are valuable when making access control decisions. In recent work, we proposed a host-based SDN in which we installed software on the end-hosts and used a centralized network control to manage the flows. This improve scalability and provided application information for use in network policy. However, that approach was not compatible with OpenFlow and had provided only conservative estimates of possible network performance. In this work, we create a high performance host-based SDN that is compatible with the OpenFlow protocol. Our approach, DeepContext, provides details about the application context to the network controller, allowing enhanced decision-making. We evaluate the performance of DeepContext, comparing it to traditional networks and Open vSwitch deployments. We further characterize the completeness of the data provided by the system and the resulting benefits. 
    more » « less