skip to main content


Title: Ligand effect in the synthesis of hyperbranched polymers via copper‐catalyzed azide‐alkyne cycloaddition polymerization (CuAACP)
ABSTRACT

Copper‐catalyzed azide‐alkyne cycloaddition polymerization (CuAACP) of AB2monomers demonstrated a chain‐growth mechanism without any external ligand because of the complexation ofin situformed triazole groups with Cu catalysts. In this study, we explored the use of various ligands that affected the polymerization kinetics to tune the polymers’ molecular weights and the degree of branching (DB). Eight ligands were studied, including polyethylene glycol monomethyl ether (PEG350,Mn= 350), tris(benzyltriazolylmethyl)amine (TBTA), 2,6‐bis(1‐undecyl‐1H‐benzo[d]imidazol‐2‐yl)pyridine (Py(DBim)2), 2,2′‐bipyridyl (bpy), 4,4′‐di‐n‐nonyl‐2,2′‐bipyridine (dNbpy),N,N,N′,N″,N″‐pentamethyldiethylenetriamine (PMDETA),N,N,N′,N″,N″‐penta(n‐butyl)diethylenetriamine (PBuDETA), andN,N,N′,N″,N″‐pentabenzyldiethylenetriamine (PBnDETA). All ligands except PEG350exhibited stronger coordination with Cu(I) than the polytriazole polymer, which freed the Cu catalyst from polymers and resulted in dominant step‐growth polymerization with simultaneous chain‐growth feature. Meanwhile, the use of PEG350ligand retained the confined Cu in the polymer, demonstrating a chain‐growth mechanism, but lower polymer molecular weights as compared with the no‐external‐ligand polymerization. Results indicated that aliphatic substituent groups on ligands had little effect on the molecular weights and DB of the polymers, but rigid aromatic substituent groups decreased both values. By varying the ligand species and amounts, hyperbranched polymers with DB value ranging from 0.53 ([TBTA]0/[Cu]0= 5) to 0.98 ([PMDETA]0/[Cu]0= 2) have been achieved. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem.2018,56, 2238–2244

 
more » « less
NSF-PAR ID:
10075777
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Journal of Polymer Science Part A: Polymer Chemistry
Volume:
56
Issue:
19
ISSN:
0887-624X
Page Range / eLocation ID:
p. 2238-2244
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT

    This article reports a chain‐growth coupling polymerization of AB difunctional monomer via copper‐catalyzed azide–alkyne cycloaddition (CuAAC) reaction for synthesis of star polymers. Unlike our previously reported CuAAC polymerization of ABn(n ≥ 2) monomers that spontaneously demonstrated a chain‐growth mechanism in synthesis of hyperbranched polymer, the homopolymerization of AB monomer showed a common but less desired step‐growth mechanism as the triazole groups aligned in a linear chain could not effectively confine the Cu catalyst in the polymer species. In contrast, the use of polytriazole‐based core molecules that contained multiple azido groups successfully switched the polymerization of AB monomers into chain‐growth mechanism and produced 3‐arm star polymers and multi‐arm hyperstar polymers with linear increase of polymer molecular weight with conversion and narrow molecular weight distribution, for example,Mw/Mn ~ 1.05. When acid‐degradable hyperbranched polymeric core was used, the obtained hyperstar polymers could be easily degraded under acidic environment, producing linear degraded arms with defined polydispersity. © 2019 Wiley Periodicals, Inc. J. Polym. Sci.2020,58, 84–90

     
    more » « less
  2. ABSTRACT

    Electrochemically mediated atom transfer radical polymerizations (ATRPs) provide well‐defined polymers with designed dispersity as well as under external temporal and spatial control. In this study, 1‐cyano‐1‐methylethyl diethyldithiocarbamate, typically used as chain‐transfer agent (CTA) in reversible addition–fragmentation chain transfer (RAFT) polymerization, was electrochemically activated by the ATRP catalyst CuI/2,2′‐bipyridine (bpy) to control the polymerization of methyl methacrylate. Mechanistic study showed that this polymerization was mainly controlled by the ATRP equilibrium. The effect of applied potential, catalyst counterion, catalyst concentration, and targeted degree of polymerization were investigated. The chain‐end functionality was preserved as demonstrated by chain extension of poly(methyl methacrylate) withn‐butyl methacrylate and styrene. This electrochemical ATRP procedure confirms that RAFT CTAs can be activated by an electrochemical stimulus. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem.2019,57, 376–381

     
    more » « less
  3. ABSTRACT

    Neodymium‐based catalysts coordinated with phosphate ligands (NdCl3·3L), where L = triethyl phosphate (TEP) or tris(2‐ethylhexyl) phosphate (TEHP), were synthesized. The ring‐opening polymerizations (ROP) of ɛ‐caprolactone (ɛ‐CL) with these catalysts in the presence of benzyl alcohol initiator were performed, yielding polymers with well‐defined molecular weights and relatively narrow polydispersity index (PDI = 1.22–1.65).In situNMR analysis of the reaction between NdCl3·3TEP and benzyl alcohol indicated that ROP proceeds through a coordination‐insertion mechanism. The end groups of the resultant polymers were determined using MALDI‐ToF mass spectrometry and NMR spectroscopy. Thequasi‐livingnature of this catalytic system was demonstrated by kinetic studies and the successful synthesis of the block copolymer poly(ɛ‐caprolactone)‐block‐poly(l‐lactide) by sequential monomer addition. Kinetic studies revealed that the catalyst with the bulkier TEHP ligand increased the rate of ROP of ɛ‐CL as compared to the TEP ligand. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem.2018,56, 1289–1296

     
    more » « less
  4. ABSTRACT

    This work investigates effects of poly(γ‐butyrolactone) (PγBL) with different initiation and termination chain ends on five types of materials properties, including thermal stability, thermal transitions, thermal recyclability, hydrolytic degradation, and dynamic mechanical behavior. Four different chain‐end‐capped polymers with similar molecular weights, BnO‐[C(=O)(CH2)3O]n‐R, R = C(=O)Me, C(=O)CH=CH2, C(=O)Ph, and SiMe2CMe3, along with a series of uncapped polymers R′O‐[C(=O)(CH2)3O]n‐H (R′ = Bn, Ph2CHCH2) withMnranging from low (4.95 kg mol−1) to high (83.2 kg mol−1), have been synthesized. The termination chain end R showed a large effect on polymer decomposition temperature and hydrolytic degradation, relative to H. Overall, for those properties sensitive to the chain ends, chain‐end capping renders R‐protected linear PγBL behaving much like cyclic PγBL. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem.2018,56, 2271–2279

     
    more » « less
  5. null (Ed.)
    Carbon dioxide based polymers synthesized from the metal-catalyzed copolymeriation of epoxides and CO 2 containing the terpyridine ligand as an end group are reported. The strategy used was to carry out the polymerization in the presence of a carboxylic acid derivative of terpyridine, 4′-(4-carboxyphenyl)-2,2′:6′,2′′-terpyridine (HL), as a chain transfer agent. The epoxide monomer possessing a vinyl substituent, allyl glycidyl ether (AGE), was copolymerized with CO 2 employing a (salen)Co( iii ) catalyst to afford a polycarbonate which upon the addition of mercaptoacetic acid across the double bond, followed by deprotonation, yielded a water soluble polymer. In a similar manner, the sequential formation of a diblock terpolymer produced from propylene oxide, AGE, and CO 2 provided a amphiphilic polycarbonate which self-assembled upon addition to water to form micelle nanostructures. The molecular weights of these CO 2 -derived polycarbonates were shown to be easily controlled by the quantity of chain transfer agent used. These polymeric ligands were demonstrated to provide a modular design for synthesizing a wide variety of metal complexes as illustrated herein for zinc and platinum derivatives. 
    more » « less