This article reports a chain‐growth coupling polymerization of AB difunctional monomer via copper‐catalyzed azide–alkyne cycloaddition (CuAAC) reaction for synthesis of star polymers. Unlike our previously reported CuAAC polymerization of AB
Copper‐catalyzed azide‐alkyne cycloaddition polymerization (CuAACP) of AB2monomers demonstrated a chain‐growth mechanism without any external ligand because of the complexation of
- PAR ID:
- 10075777
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Journal of Polymer Science Part A: Polymer Chemistry
- Volume:
- 56
- Issue:
- 19
- ISSN:
- 0887-624X
- Page Range / eLocation ID:
- p. 2238-2244
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
ABSTRACT n (n ≥ 2) monomers that spontaneously demonstrated a chain‐growth mechanism in synthesis of hyperbranched polymer, the homopolymerization of AB monomer showed a common but less desired step‐growth mechanism as the triazole groups aligned in a linear chain could not effectively confine the Cu catalyst in the polymer species. In contrast, the use of polytriazole‐based core molecules that contained multiple azido groups successfully switched the polymerization of AB monomers into chain‐growth mechanism and produced 3‐arm star polymers and multi‐arm hyperstar polymers with linear increase of polymer molecular weight with conversion and narrow molecular weight distribution, for example,M w/M n ~ 1.05. When acid‐degradable hyperbranched polymeric core was used, the obtained hyperstar polymers could be easily degraded under acidic environment, producing linear degraded arms with defined polydispersity. © 2019 Wiley Periodicals, Inc. J. Polym. Sci.2020 ,58 , 84–90 -
ABSTRACT This work investigates effects of poly(
γ ‐butyrolactone) (Pγ BL) with different initiation and termination chain ends on five types of materials properties, including thermal stability, thermal transitions, thermal recyclability, hydrolytic degradation, and dynamic mechanical behavior. Four different chain‐end‐capped polymers with similar molecular weights, BnO‐[C(=O)(CH2)3O]n‐R, R = C(=O)Me, C(=O)CH=CH2, C(=O)Ph, and SiMe2CMe3, along with a series of uncapped polymers R′O‐[C(=O)(CH2)3O]n‐H (R′ = Bn, Ph2CHCH2) withM nranging from low (4.95 kg mol−1) to high (83.2 kg mol−1), have been synthesized. The termination chain end R showed a large effect on polymer decomposition temperature and hydrolytic degradation, relative to H. Overall, for those properties sensitive to the chain ends, chain‐end capping renders R‐protected linear Pγ BL behaving much like cyclic Pγ BL. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem.2018 ,56 , 2271–2279 -
ABSTRACT Electrochemically mediated atom transfer radical polymerizations (ATRPs) provide well‐defined polymers with designed dispersity as well as under external temporal and spatial control. In this study, 1‐cyano‐1‐methylethyl diethyldithiocarbamate, typically used as chain‐transfer agent (CTA) in reversible addition–fragmentation chain transfer (RAFT) polymerization, was electrochemically activated by the ATRP catalyst CuI/2,2′‐bipyridine (bpy) to control the polymerization of methyl methacrylate. Mechanistic study showed that this polymerization was mainly controlled by the ATRP equilibrium. The effect of applied potential, catalyst counterion, catalyst concentration, and targeted degree of polymerization were investigated. The chain‐end functionality was preserved as demonstrated by chain extension of poly(methyl methacrylate) with
n ‐butyl methacrylate and styrene. This electrochemical ATRP procedure confirms that RAFT CTAs can be activated by an electrochemical stimulus. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem.2019 ,57 , 376–381 -
ABSTRACT Neodymium‐based catalysts coordinated with phosphate ligands (NdCl3·3L), where L = triethyl phosphate (TEP) or tris(2‐ethylhexyl) phosphate (TEHP), were synthesized. The ring‐opening polymerizations (ROP) of ɛ‐caprolactone (ɛ‐CL) with these catalysts in the presence of benzyl alcohol initiator were performed, yielding polymers with well‐defined molecular weights and relatively narrow polydispersity index (PDI = 1.22–1.65).
In situ NMR analysis of the reaction between NdCl3·3TEP and benzyl alcohol indicated that ROP proceeds through a coordination‐insertion mechanism. The end groups of the resultant polymers were determined using MALDI‐ToF mass spectrometry and NMR spectroscopy. Thequasi‐living nature of this catalytic system was demonstrated by kinetic studies and the successful synthesis of the block copolymer poly(ɛ‐caprolactone)‐block ‐poly(l ‐lactide) by sequential monomer addition. Kinetic studies revealed that the catalyst with the bulkier TEHP ligand increased the rate of ROP of ɛ‐CL as compared to the TEP ligand. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem.2018 ,56 , 1289–1296 -
ABSTRACT New methacrylate monomers with carbazole moieties as pendant groups were synthesized by multistep syntheses starting from carbazoles with biphenyl substituents in the aromatic ring. The corresponding polymers were prepared using a free‐radical polymerization. The novel polymers contain
N ‐alkylated carbazoles mono‐ or bi‐substituted with biphenyl groups in the aromatic ring.N ‐alkyl chains in polymers vary by length and structure. All new polymers were synthesized to evaluate the structural changes in terms of their effect on the energy profile, thermal, dielectric, and photophysical properties when compared to the parent polymer poly(2‐(9H‐carbazol‐9‐yl)ethyl methacrylate). According to the obtained results, these compounds may be well suited for memory resistor devices. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem.2019 , 57, 70–76