skip to main content


Title: Nanoscale 3D printing of hydrogels for cellular tissue engineering
Hydrogel scaffolds that mimic the native extracellular matrix (ECM) environment play a crucial role in tissue engineering. It has been demonstrated that cell behaviors can be affected by not only the hydrogel's physical and chemical properties, but also its three dimensional (3D) geometrical structures. In order to study the influence of 3D geometrical cues on cell behaviors as well as the maturation and function of engineered tissues, it is imperative to develop 3D fabrication techniques for creating micro and nanoscale hydrogel constructs. Among existing techniques that can effectively pattern hydrogels, two-photon polymerization (2PP)-based femtosecond laser 3D printing technology allows one to produce hydrogel structures with a resolution of 100 nm. This article reviews the basics of this technique and some of its applications in tissue engineering.  more » « less
Award ID(s):
1644967 1547005
NSF-PAR ID:
10075796
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Journal of Materials Chemistry B
Volume:
6
Issue:
15
ISSN:
2050-750X
Page Range / eLocation ID:
2187 to 2197
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Patterned deposition and 3D fabrication techniques have enabled the use of hydrogels for a number of applications including microfluidics, sensors, separations, and tissue engineering in which form fits function. Devices such as reconfigurable microvalves or implantable tissues have been created using lithography or casting techniques. Here, we present a novel open-microfluidic patterning method that utilizes surface tension forces to form hydrogel layers on top of each other, into a patterned 3D structure. We use a patterning device to form a temporary open microfluidic channel on an existing gel layer, allowing the controlled flow of unpolymerized gel in device-regions. After layer gelation and device removal, the process can be repeated iteratively to create multi-layered 3D structures. The use of open-microfluidic and surface tension-based methods to define the shape of each individual layer enables patterning to be performed with a simple pipette and with minimal dead-volume. Our method is compatible with unmodified (native) biological hydrogels, and other non-biological materials with precursor fluid properties compatible with capillary flow. With our open-microfluidic layer-by-layer fabrication method, we demonstrate the capability to build agarose, type I collagen, and polymer–peptide 3D structures featuring asymmetric designs, multiple components, overhanging features, and cell-laden regions. 
    more » « less
  2. Replacement therapy for the salivary gland (SG) remains an unmet clinical need. Xerostomia (“dry mouth”) due to hyposalivation can result from injury or disease to the SG, such as salivary acinar death caused by radiation therapy (RT) for head and neck squamous cell carcinoma (HNSCC). Currently, only palliative treatments exist for xerostomia, and many patients endure deteriorated oral health and poor quality of life. Tissue engineering could offer a permanent solution for SG replacement by isolating healthy SG tissues prior to RT, expanding its cells in vitro, and recreating a functional salivary neogland for implantation post-RT. 3D bioprinting methods potentiate spatial cell deposition into defined hydrogel-based architectures, mimicking the thin epithelia developed during the complex branching morphogenesis of SG. By leveraging a microfluidics-based bioprinter with coaxial polymer and crosslinker streams, we fabricated thin, biocompatible, and reproducible hydrogel features that recapitulate the thin epithelia characteristics of SG. This flexible platform enabled two modes of printing: we produced solid hydrogel fibers, with diameters <100 μm, that could be rastered to create larger mm-scale structures. By a second method, we generated hollow tubes with wall thicknesses ranging 45-80 μm, total tube diameters spanning 0.6 – 2.2 mm, and confirmed tube patency. In both cases, SG cells could be printed within the thin hydrogel features, with preserved phenotype and high viability, even at high density (5.0 × 10^6 cells/mL). Our work demonstrates hydrogel feature control across multiple length scales, and a new paradigm for addressing SG restoration by creating microscale tissue engineered components. 
    more » « less
  3. Load-bearing soft tissues normally show J-shaped stress–strain behaviors with high compliance at low strains yet high strength at high strains. They have high water content but are still tough and durable. By contrast, naturally derived hydrogels are weak and brittle. Although hydrogels prepared from synthetic polymers can be strong and tough, they do not have the desired bioactivity for emerging biomedical applications. Here, we present a thermomechanical approach to replicate the combinational properties of soft tissues in protein-based photocrosslinkable hydrogels. As a demonstration, we create a gelatin methacryloyl fiber hydrogel with soft tissue-like mechanical properties, such as low Young’s modulus (0.1 to 0.3 MPa), high strength (1.1 ± 0.2 MPa), high toughness (9,100 ± 2,200 J/m 3 ), and high fatigue resistance (2,300 ± 500 J/m 2 ). This hydrogel also resembles the biochemical and architectural properties of native extracellular matrix, which enables a fast formation of 3D interconnected cell meshwork inside hydrogels. The fiber architecture also regulates cellular mechanoresponse and supports cell remodeling inside hydrogels. The integration of tissue-like mechanical properties and bioactivity is highly desirable for the next-generation biomaterials and could advance emerging fields such as tissue engineering and regenerative medicine. 
    more » « less
  4. Abstract

    Hydrogels are important functional materials useful for 3D cell culture, tissue engineering, 3D printing, drug delivery, sensors, or soft robotics. The ability to shape hydrogels into defined 3D structures, patterns, or particles is crucial for biomedical applications. Here, the rapid photodegradability of commonly used polymethacrylate hydrogels is demonstrated without the need to incorporate additional photolabile functionalities. Hydrogel degradation depths are quantified with respect to the irradiation time, light intensity, and chemical composition. It can be shown that these parameters can be utilized to control the photodegradation behavior of polymethacrylate hydrogels. The photodegradation kinetics, the change in mechanical properties of polymethacrylate hydrogels upon UV irradiation, as well as the photodegradation products are investigated. This approach is then exploited for microstructuring and patterning of hydrogels including hydrogel gradients as well as for the formation of hydrogel particles and hydrogel arrays of well‐defined shapes. Cell repellent but biocompatible hydrogel microwells are fabricated using this method and used to form arrays of cell spheroids. As this method is based on readily available and commonly used methacrylates and can be conducted using cheap UV light sources, it has vast potential to be applied by laboratories with various backgrounds and for diverse applications.

     
    more » « less
  5. Abstract

    Capillary scale vascularization is critical to the survival of engineered 3D tissues and remains an outstanding challenge for the field of tissue engineering. Current methods to generate micro‐scale vasculatures such as 3D printing, two photon hydrogel ablation, angiogenesis, and vasculogenic assembly face challenges in rapidly creating organized, highly vascularized tissues at capillary length‐scales. Within metabolically demanding tissues, native capillary beds are highly organized and densely packed to achieve adequate delivery of nutrients and oxygen and efficient waste removal. Here, two existing techniques are adopted to fabricate lattices composed of sacrificial microfibers that can be efficiently and uniformly seeded with endothelial cells (ECs) by magnetizing both lattices and ECs. Ferromagnetic microparticles are incorporated into microfibers produced by solution electrowriting and fiber electropulling. By loading ECs with superparamagnetic iron oxide nanoparticles, the cells could be seeded onto magnetized microfiber lattices. Following encapsulation in a hydrogel, the capillary templating lattice is selectively degraded by a bacterial lipase that does not impact mammalian cell viability or function. This study introduces a novel approach to rapidly producing organized capillary networks within metabolically demanding engineered tissue constructs which should have broad utility in the fields of tissue engineering and regenerative medicine.

     
    more » « less