skip to main content

Title: The 2018 M W 7.9 Gulf of Alaska Earthquake: Multiple Fault Rupture in the Pacific Plate
Award ID(s):
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geophysical Research Letters
Page Range / eLocation ID:
p. 9542-9551
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Vanadium multiredox‐based NASICON‐NazV2−yMy(PO4)3(3 ≤z ≤ 4; M = Al3+, Cr3+, and Mn2+) cathodes are particularly attractive for Na‐ion battery applications due to their high Na insertion voltage (>3.5 V vs Na+/Na0), reversible storage capacity (≈150 mA h g−1), and rate performance. However, their practical application is hindered by rapid capacity fade due to bulk structural rearrangements at high potentials involving complex redox and local structural changes. To decouple these factors, a series of Mg2+‐substituted Na3+yV2−yMgy(PO4)3(0 ≤y ≤ 1) cathodes is studied for which the only redox‐active species is vanadium. While X‐ray diffraction (XRD) confirms the formation of solid solutions between they = 0 and 1 end members, X‐ray absorption spectroscopy and solid‐state nuclear magnetic resonance reveal a complex evolution of the local structure upon progressive Mg2+substitution for V3+. Concurrently, the intercalation voltage rises from 3.35 to 3.45 V, due to increasingly more ionic VO bonds, and the sodium (de)intercalation mechanism transitions from a two‐phase fory ≤ 0.5 to a solid solution process fory ≥ 0.5, as confirmed by in operando XRD, while Na‐ion diffusion kinetics follow a nonlinear trend across the compositional series.

    more » « less
  2. Context. The M BH – σ ⋆ relation is considered a result of coevolution between the host galaxies and their supermassive black holes. For elliptical bulge hosting inactive galaxies, this relation is well established, but there is still discussion concerning whether active galaxies follow the same relation. Aims. In this paper, we estimate black hole masses for a sample of 19 local luminous active galactic nuclei (AGNs; LLAMA) to test their location on the M BH – σ ⋆ relation. In addition, we test how robustly we can determine the stellar velocity dispersion in the presence of an AGN continuum and AGN emission lines, and as a function of signal-to-noise ratio. Methods. Supermassive black hole masses ( M BH ) were derived from the broad-line-based relations for H α , H β , and Pa β emission line profiles for Type 1 AGNs. We compared the bulge stellar velocity dispersion ( σ ⋆ ) as determined from the Ca II triplet (CaT) with the dispersion measured from the near-infrared CO (2-0) absorption features for each AGN and find them to be consistent with each other. We applied an extinction correction to the observed broad-line fluxes and we corrected the stellar velocity dispersion by an average rotation contribution as determined from spatially resolved stellar kinematic maps. Results. The H α -based black hole masses of our sample of AGNs were estimated in the range 6.34 ≤ log M BH  ≤ 7.75 M ⊙ and the σ ⋆CaT estimates range between 73 ≤  σ ⋆CaT  ≤ 227 km s −1 . From the so-constructed M BH  −  σ ⋆ relation for our Type 1 AGNs, we estimate the black hole masses for the Type 2 AGNs and the inactive galaxies in our sample. Conclusions. We find that our sample of local luminous AGNs is consistent with the M BH – σ ⋆ relation of lower luminosity AGNs and inactive galaxies, after correcting for dust extinction and the rotational contribution to the stellar velocity dispersion. 
    more » « less