skip to main content


Title: The role of diversity in data‐driven analysis of multi‐subject fMRI data: Comparison of approaches based on independence and sparsity using global performance metrics
Abstract

Data‐driven methods have been widely used in functional magnetic resonance imaging (fMRI) data analysis. They extract latent factors, generally, through the use of a simple generative model. Independent component analysis (ICA) and dictionary learning (DL) are two popular data‐driven methods that are based on two different forms of diversity—statistical properties of the data—statistical independence for ICA and sparsity for DL. Despite their popularity, the comparative advantage of emphasizing one property over another in the decomposition of fMRI data is not well understood. Such a comparison is made harder due to the differences in the modeling assumptions between ICA and DL, as well as within different ICA algorithms where each algorithm exploits a different form of diversity. In this paper, we propose the use of objective global measures, such as time course frequency power ratio, network connection summary, and graph theoretical metrics, to gain insight into the role that different types of diversity have on the analysis of fMRI data. Four ICA algorithms that account for different types of diversity and one DL algorithm are studied. We apply these algorithms to real fMRI data collected from patients with schizophrenia and healthy controls. Our results suggest that no one particular method has the best performance using all metrics, implying that the optimal method will change depending on the goal of the analysis. However, we note that in none of the scenarios we test the highly popular Infomax provides the best performance, demonstrating the cost of exploiting limited form of diversity.

 
more » « less
Award ID(s):
1631838 1618551 1921917
NSF-PAR ID:
10075808
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Human Brain Mapping
Volume:
40
Issue:
2
ISSN:
1065-9471
Page Range / eLocation ID:
p. 489-504
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Independent component analysis (ICA) has found wide application in a variety of areas, and analysis of functional magnetic resonance imaging (fMRI) data has been a particularly fruitful one. Maximum likelihood provides a natural formulation for ICA and allows one to take into account multiple statistical properties of the data—forms of diversity. While use of multiple types of diversity allows for additional flexibility, it comes at a cost, leading to high variability in the solution space. In this paper, using simulated as well as fMRI-like data, we provide insight into the trade-offs between estimation accuracy and algorithmic consistency with or without deviations from the assumed model and assumptions such as the statistical independence. Additionally, we propose a new metric, cross inter-symbol interference, to quantify the consistency of an algorithm across different runs, and demonstrate its desirable performance for selecting consistent run compared to other metrics used for the task. 
    more » « less
  2. null (Ed.)
    Monitoring of fetal electrocardiogram (fECG) would provide useful information about fetal wellbeing as well as any abnormal development during pregnancy. Recent advances in flexible electronics and wearable technologies have enabled compact devices to acquire personal physiological signals in the home setting, including those of expectant mothers. However, the high noise level in the daily life renders long-entrenched challenges to extract fECG from the combined fetal/maternal ECG signal recorded in the abdominal area of the mother. Thus, an efficient fECG extraction scheme is a dire need. In this work, we intensively explored various extraction algorithms, including template subtraction (TS), independent component analysis (ICA), and extended Kalman filter (EKF) using the data from the PhysioNet 2013 Challenge. Furthermore, the modified data with Gaussian and motion noise added, mimicking a practical scenario, were utilized to examine the performance of algorithms. Finally, we combined different algorithms together, yielding promising results, with the best performance in the F1 score of 92.61% achieved by an algorithm combining ICA and TS. With the data modified by adding different types of noise, the combination of ICA–TS–ICA showed the highest F1 score of 85.4%. It should be noted that these combined approaches required higher computational complexity, including execution time and allocated memory compared with other methods. Owing to comprehensive examination through various evaluation metrics in different extraction algorithms, this study provides insights into the implementation and operation of state-of-the-art fetal and maternal monitoring systems in the era of mobile health. 
    more » « less
  3. NA (Ed.)

    Abstract. This study investigates the inability of two popular data splitting techniques: train/test split and k-fold cross-validation that are to create training and validation data sets, and to achieve sufficient generality for supervised deep learning (DL) methods. This failure is mainly caused by their limited ability of new data creation. In response, the bootstrap is a computer based statistical resampling method that has been used efficiently for estimating the distribution of a sample estimator and to assess a model without having knowledge about the population. This paper couples cross-validation and bootstrap to have their respective advantages in view of data generation strategy and to achieve better generalization of a DL model. This paper contributes by: (i) developing an algorithm for better selection of training and validation data sets, (ii) exploring the potential of bootstrap for drawing statistical inference on the necessary performance metrics (e.g., mean square error), and (iii) introducing a method that can assess and improve the efficiency of a DL model. The proposed method is applied for semantic segmentation and is demonstrated via a DL based classification algorithm, PointNet, through aerial laser scanning point cloud data.

     
    more » « less
  4. Abstract

    I applaud the authors on their innovative generalized independent component analysis (ICA) framework for neuroimaging data. Although ICA has enjoyed great popularity for the analysis of functional magnetic resonance imaging (fMRI) data, its applicability to other modalities has been limited because standard ICA algorithms may not be directly applicable to a diversity of data representations. This is particularly true for single‐subject structural neuroimaging, where only a single measurement is collected at each location in the brain. The ingenious idea of Wuet al.(2021) is to transform the data to a vector of probabilities via a mixture distribution withKcomponents, which (following a simple transformation to ) can be directly analyzed with standard ICA algorithms, such as infomax (Bell and Sejnowski, 1995) or fastICA (Hyvarinen, 1999). The underlying distribution forming the basis of the mixture is customized to the particular modality being analyzed. This framework, termeddistributional ICA(DICA), is applicable in theory to nearly any neuroimaging modality. This has substantial implications for ICA as a general tool for neuroimaging analysis, with particular promise for structural modalities and multimodal studies. This invited commentary focuses on the applicability and potential of DICA for different neuroimaging modalities, questions around details of implementation and performance, and limitations of the validation study presented in the paper.

     
    more » « less
  5. Abstract

    Brain networks extracted by independent component analysis (ICA) from magnitude‐only fMRI data are usually denoised using various amplitude‐based thresholds. By contrast, spatial source phase (SSP) or the phase information of ICA brain networks extracted from complex‐valued fMRI data, has provided a simple yet effective way to perform the denoising using a fixed phase change. In this work, we extend the approach to magnitude‐only fMRI data to avoid testing various amplitude thresholds for denoising magnitude maps extracted by ICA, as most studies do not save the complex‐valued data. The main idea is to generate a mathematical SSP map for a magnitude map using a mapping framework, and the mapping framework is built using complex‐valued fMRI data with a known SSP map. Here we leverage the fact that the phase map derived from phase fMRI data has similar phase information to the SSP map. After verifying the use of the magnitude data of complex‐valued fMRI, this framework is generalized to work with magnitude‐only data, allowing use of our approach even without the availability of the corresponding phase fMRI datasets. We test the proposed method using both simulated and experimental fMRI data including complex‐valued data from University of New Mexico and magnitude‐only data from Human Connectome Project. The results provide evidence that the mathematical SSP denoising with a fixed phase change is effective for denoising spatial maps from magnitude‐only fMRI data in terms of retaining more BOLD‐related activity and fewer unwanted voxels, compared with amplitude‐based thresholding. The proposed method provides a unified and efficient SSP approach to denoise ICA brain networks in fMRI data.

     
    more » « less