- Award ID(s):
- 1718089
- PAR ID:
- 10075829
- Date Published:
- Journal Name:
- International Conference on Network Protocols
- Page Range / eLocation ID:
- 1 to 10
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Cellular service providers continuously upgrade their network software on base stations to introduce new service features, fix software bugs, enhance quality of experience to users, or patch security vulnerabilities. A software upgrade typically requires the network element to be taken out of service, which can potentially degrade the service to users. Thus, the new software is deployed across the network using a rolling upgrade model such that the service impact during the roll-out is minimized. A sequential roll-out guarantees minimal impact but increases the deployment time thereby incurring a significant human cost and time in monitoring the upgrade. A network-wide concurrent roll-out guarantees minimal deployment time but can result in a significant service impact. The goal is to strike a balance between deployment time and service impact during the upgrade. In this paper, we first present our findings from analyzing upgrades in operational networks and discussions with network operators and exposing the challenges in rolling software upgrades. We propose a new framework Concord to effectively coordinate software upgrades across the network that balances the deployment time and service impact. We evaluate Concord using real-world data collected from a large operational cellular network and demonstrate the benefits and tradeoffs. We also present a prototype deployment of Concord using a small-scale LTE testbed deployed indoors in a corporate building.more » « less
-
Recently, the ubiquity of mobile devices leads to an increasing demand of public network services, e.g., WiFi hot spots. As a part of this trend, modern transportation systems are equipped with public WiFi devices to provide Internet access for passengers as people spend a large amount of time on public transportation in their daily life. However, one of the key issues in public WiFi spots is the privacy concern due to its open access nature. Existing works either studied location privacy risk in human traces or privacy leakage in private networks such as cellular networks based on the data from cellular carriers. To the best of our knowledge, none of these work has been focused on bus WiFi privacy based on large-scale real-world data. In this paper, to explore the privacy risk in bus WiFi systems, we focus on two key questions how likely bus WiFi users can be uniquely re-identified if partial usage information is leaked and how we can protect users from the leaked information. To understand the above questions, we conduct a case study in a large-scale bus WiFi system, which contains 20 million connection records and 78 million location records from 770 thousand bus WiFi users during a two-month period. Technically, we design two models for our uniqueness analyses and protection, i.e., a PB-FIND model to identify the probability a user can be uniquely re-identified from leaked information; a PB-HIDE model to protect users from potentially leaked information. Specifically, we systematically measure the user uniqueness on users' finger traces (i.e., connection URL and domain), foot traces (i.e., locations), and hybrid traces (i.e., both finger and foot traces). Our measurement results reveal (i) 97.8% users can be uniquely re-identified by 4 random domain records of their finger traces and 96.2% users can be uniquely re-identified by 5 random locations on buses; (ii) 98.1% users can be uniquely re-identified by only 2 random records if both their connection records and locations are leaked to attackers. Moreover, the evaluation results show our PB-HIDE algorithm protects more than 95% users from the potentially leaked information by inserting only 1.5% synthetic records in the original dataset to preserve their data utility.more » « less
-
Networking research has witnessed a renaissance from exploring the seemingly unlimited predictive power of machine learning (ML) models. One such promising direction is throughput prediction – accurately predicting the network bandwidth or achievable throughput of a client in real time using ML models can enable a wide variety of network applications to proactively adapt their behavior to the changing network dynamics to potentially achieve significantly improved QoE. Motivated by the key role of newer generations of cellular networks in supporting the new generation of latency-critical applications such as AR/MR, in this work, we focus on accurate throughput prediction in cellular networks at fine time-scales, e.g., in the order of 100 ms. Through a 4-day, 1000+ km driving trip, we collect a dataset of fine-grained throughput measurements under driving across all three major US operators. Using the collected dataset, we conduct the first feasibility study of predicting fine-grained application throughput in real-world cellular networks with mixed LTE/5G technologies. Our analysis shows that popular ML models previously claimed to predict well for various wireless networks scenarios (e.g., WiFi or singletechnology network such as LTE only) do not predict well under app-centric metrics such as ARE95 and PARE10. Further, we uncover the root cause for the poor prediction accuracy of ML models as the inherent conflicting sample sequences in the fine-grained cellular network throughput data.more » « less
-
We investigate cost-efficient upgrade strategies for capacity enhancement in optical backbone networks enabled by C+L-band optical line systems. A multi-period strategy for upgrading network links from the C band to the C+L band is proposed, ensuring physical-layer awareness, cost effectiveness, and less than 0.1% blocking. Results indicate that the performance of an upgrade strategy depends on efficient selection of the sequence of links to be upgraded and on the time instant to upgrade, which are either topology or traffic dependent. Given a network topology, a set of traffic demands, and growth projections, our illustrative numerical results show that a well-devised upgrade strategy can achieve superior cost efficiency during the capacity upgrade to C+L enhancement.
-
Multipath transmission is considered one of the promising solutions to improve wireless resource utilization where there are many kinds of heterogeneous networks around. Most scheduling algorithms rely on real-time network metrics, including delay, packet loss, and arrival rates, and achieve satisfying results in simulation or wired environments. However, the implicit premise of a scheduling algorithm may conflict with the characteristics of real heterogeneous wireless networks, which has been ignored before. This paper analyzes the real network metrics of three Chinese heterogeneous wireless networks under different transmission rates. To make the results more convincing, we conduct experiments in various scenarios, including different locations, different times of the day, different numbers of users, and different motion speeds. Further, we verify the suitability of a typical delay-aware multipath scheduling algorithm, Lowest Round Trip Time, in heterogeneous networks based on the actual data measured above. Finally, we conclude the characteristics of heterogeneous wireless networks, which need to be considered in a well-designed multipath scheduling algorithm.more » « less