skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Thursday, January 16 until 2:00 AM ET on Friday, January 17 due to maintenance. We apologize for the inconvenience.


Title: Coordinating rolling software upgrades for cellular networks
Cellular service providers continuously upgrade their network software on base stations to introduce new service features, fix software bugs, enhance quality of experience to users, or patch security vulnerabilities. A software upgrade typically requires the network element to be taken out of service, which can potentially degrade the service to users. Thus, the new software is deployed across the network using a rolling upgrade model such that the service impact during the roll-out is minimized. A sequential roll-out guarantees minimal impact but increases the deployment time thereby incurring a significant human cost and time in monitoring the upgrade. A network-wide concurrent roll-out guarantees minimal deployment time but can result in a significant service impact. The goal is to strike a balance between deployment time and service impact during the upgrade. In this paper, we first present our findings from analyzing upgrades in operational networks and discussions with network operators and exposing the challenges in rolling software upgrades. We propose a new framework Concord to effectively coordinate software upgrades across the network that balances the deployment time and service impact. We evaluate Concord using real-world data collected from a large operational cellular network and demonstrate the benefits and tradeoffs. We also present a prototype deployment of Concord using a small-scale LTE testbed deployed indoors in a corporate building.  more » « less
Award ID(s):
1718089
PAR ID:
10075828
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
International Conference on Network Protocols
Page Range / eLocation ID:
1 to 10
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Cellular networks are constantly evolving due to frequent changes in radio access and end user equipment technologies, dynamic applications and associated traffic mixes. Network upgrades should be performed with extreme caution since millions of users heavily depend on the cellular networks for a wide range of day to day tasks, including emergency and alert notifications. Before upgrading the entire network, it is important to conduct field evaluation of upgrades. Field evaluations are typically cumbersome and can be time consuming; however if done correctly they can help alleviate a lot of the deployment issues in terms of service quality degradation. The choice and number of field test locations have significant impacts on the time-to-market as well as confidence in how well various network upgrades will work out in the rest of the network. In this paper, we propose a novel approach – Reflection to automatically determine where to conduct the upgrade field tests in order to accurately identify important features that affect the upgrade. We demonstrate the effectiveness of Reflection using extensive evaluation based on real traces collected from a major US cellular network as well as synthetic traces. 
    more » « less
  2. null (Ed.)
    One of the most costly factors in providing a global computing infrastructure such as the WLCG is the human effort in deployment, integration, and operation of the distributed services supporting collaborative computing, data sharing and delivery, and analysis of extreme scale datasets. Furthermore, the time required to roll out global software updates, introduce new service components, or prototype novel systems requiring coordinated deployments across multiple facilities is often increased by communication latencies, staff availability, and in many cases expertise required for operations of bespoke services. While the WLCG (and distributed systems implemented throughout HEP) is a global service platform, it lacks the capability and flexibility of a modern platform-as-a-service including continuous integration/continuous delivery (CI/CD) methods, development-operations capabilities (DevOps, where developers assume a more direct role in the actual production infrastructure), and automation. Most importantly, tooling which reduces required training, bespoke service expertise, and the operational effort throughout the infrastructure, most notably at the resource endpoints (sites), is entirely absent in the current model. In this paper, we explore ideas and questions around potential NoOps models in this context: what is realistic given organizational policies and constraints? How should operational responsibility be organized across teams and facilities? What are the technical gaps? What are the social and cybersecurity challenges? Conversely what advantages does a NoOps model deliver for innovation and for accelerating the pace of delivery of new services needed for the HL-LHC era? We will describe initial work along these lines in the context of providing a data delivery network supporting IRIS-HEP DOMA R&D. 
    more » « less
  3. Elastic optical networks (EONs) operating in the C-band have been widely deployed worldwide. However, two major technologies—multiband elastic optical networks (MB-EONs) and space division multiplexed elastic optical networks (SDM-EONs)—can significantly increase network capacity beyond traditional EONs. A one-time greenfield deployment of these flexible-grid technologies may not be practical, as existing investments in flexible-grid EONs need to be preserved and ongoing services must face minimal disruption. Therefore, we envision the coexistence of flexible-grid, multiband, and multicore technologies during the brownfield migration. Each technology represents a tradeoff between higher capacity and greater deployment overhead, directly impacting network performance. Moreover, as traffic demands continue rising, capacity exhaustion becomes inevitable. Considering the different characteristics of these technologies, we propose a robust network planning solution called Progressive Optics Deployment and Integration for Growing Yields (PRODIGY+) to gradually migrate current C-band EONs. PRODIGY+ employs proactive measures inspired by the Swiss Cheese Model, making the network robust to traffic peaks while meeting service level agreements. The upgrade strategy enables a gradual transition to minimize migration costs while continuously supporting increasing traffic demands. We provide a detailed comparison of our proposed PRODIGY+ strategy against baseline strategies, demonstrating its superior performance.

     
    more » « less
  4. We report on our plans to upgrade the detector systems in the 2022–2024 time frame for three of the workhorse instruments (NIRC2, DEIMOS, and NIRES) operated by the W. M. Keck Observatory. The upgrades are done in collaboration with Observatory partner institutions and other Maunakea observatories. The main motivating factors behind these upgrades are to tackle obsolescence of hardware and software components, to boost observing efficiency, to enhance the instrument throughput, and to add new observing functionality.

     
    more » « less
  5. Privacy technologies support the provision of online services while protecting user privacy. Cryptography lies at the heart of many such technologies, creating remarkable possibilities in terms of functionality while offering robust guarantees of data confidential- ity. The cryptography literature and discourse often represent that these technologies eliminate the need to trust service providers, i.e., they enable users to protect their privacy even against untrusted service providers. Despite their apparent promise, privacy technolo- gies have seen limited adoption in practice, and the most successful ones have been implemented by the very service providers these technologies purportedly protect users from. The adoption of privacy technologies by supposedly adversarial service providers highlights a mismatch between traditional models of trust in cryptography and the trust relationships that underlie deployed technologies in practice. Yet this mismatch, while well known to the cryptography and privacy communities, remains rela- tively poorly documented and examined in the academic literature— let alone broader media. This paper aims to fill that gap. Firstly, we review how the deployment of cryptographic tech- nologies relies on a chain of trust relationships embedded in the modern computing ecosystem, from the development of software to the provision of online services, that is not fully captured by tra- ditional models of trust in cryptography. Secondly, we turn to two case studies—web search and encrypted messaging—to illustrate how, rather than removing trust in service providers, cryptographic privacy technologies shift trust to a broader community of secu- rity and privacy experts and others, which in turn enables service providers to implicitly build and reinforce their trust relationship with users. Finally, concluding that the trust models inherent in the traditional cryptographic paradigm elide certain key trust relation- ships underlying deployed cryptographic systems, we highlight the need for organizational, policy, and legal safeguards to address that mismatch, and suggest some directions for future work. 
    more » « less