skip to main content

Title: Physics-inspired heuristics for soft MIMO detection in 5G new radio and beyond
Overcoming the conventional trade-off between throughput and bit error rate (BER) performance, versus computational complexity is a long-term challenge for uplink Multiple-Input Multiple-Output (MIMO) detection in base station design for the cellular 5G New Radio roadmap, as well as in next generation wireless local area networks. In this work, we present ParaMax, a MIMO detector architecture that for the first time brings to bear physics-inspired parallel tempering algorithmic techniques [28, 50, 67] on this class of problems. ParaMax can achieve near optimal maximum-likelihood (ML) throughput performance in the Large MIMO regime, Massive MIMO systems where the base station has additional RF chains, to approach the number of base station antennas, in order to support even more parallel spatial streams. ParaMax is able to achieve a near ML-BER performance up to 160 × 160 and 80 × 80 Large MIMO for low-order modulations such as BPSK and QPSK, respectively, only requiring less than tens of processing elements. With respect to Massive MIMO systems, in 12 × 24 MIMO with 16-QAM at SNR 16 dB, ParaMax achieves 330 Mbits/s near-optimal system throughput with 4--8 processing elements per subcarrier, which is approximately 1.4× throughput than linear detector-based Massive MIMO systems.
Authors:
; ; ;
Award ID(s):
1824357 1824470
Publication Date:
NSF-PAR ID:
10299375
Journal Name:
Proceedings of the 27th Annual International Conference on Mobile Computing and Networking
Page Range or eLocation-ID:
42 to 55
Sponsoring Org:
National Science Foundation
More Like this
  1. In a multi-user system with multiple antennas at the base station, precoding techniques in the downlink broadcast channel allow users to detect their respective data in a non-cooperative manner. Vector Perturbation Precoding (VPP) is a non-linear variant of transmit-side channel inversion that perturbs user data to achieve full diversity order. While promising, finding an optimal perturbation in VPP is known to be an NP-hard problem, demanding heavy computational support at the base station and limiting the feasibility of the approach to small MIMO systems. This work proposes a radically different processing architecture for the downlink VPP problem, one based on Quantum Annealing (QA), to enable the applicability of VPP to large MIMO systems. Our design reduces VPP to a quadratic polynomial form amenable to QA, then refines the problem coefficients to mitigate the adverse effects of QA hardware noise. We evaluate our proposed QA based VPP (QAVP) technique on a real Quantum Annealing device over a variety of design and machine parameter settings. With existing hardware, QAVP can achieve a BER of 10 −4 with 100µs compute time, for a 6 × 6 MIMO system using 64 QAM modulation at 32 dB SNR.
  2. Massive multi-user multiple-input multiple-output (MU-MIMO) enables significant gains in spectral efficiency and link reliability compared to conventional, small-scale MIMO technology. In addition, linear precoding using zero forcing or Wiener filter (WF) precoding is sufficient to achieve excellent error rate performance in the massive MU-MIMO downlink. However, these methods typically require centralized processing at the base-station (BS), which causes (i) excessively high interconnect and chip input/output data rates, and (ii) high implementation complexity. We propose two feed-forward architectures and corresponding decentralized WF precoders that parallelize precoding across multiple computing fabrics, effectively mitigating the limitations of centralized approaches. To demonstrate the efficacy of our decentralized precoders, we provide implementation results on a multi-GPU system, which show that our solutions achieve throughputs in the Gbit/s regime while achieving (near-)optimal error-rate performance in the massive MU-MIMO downlink.
  3. Massive multi-user multiple-input multiple-output (MU-MIMO) enables significant gains in spectral efficiency and link reliability compared to conventional, small-scale MIMO technology. In addition, linear precoding using zero forcing or Wiener filter (WF) precoding is sufficient to achieve excellent error rate performance in the massive MU-MIMO downlink. However, these methods typically require centralized processing at the base-station (BS), which causes (i) excessively high interconnect and chip input/output data rates, and (ii) high implementation complexity. We propose two feedforward architectures and corresponding decentralized WF precoders that parallelize precoding across multiple computing fabrics, effectively mitigating the limitations of centralized approaches. To demonstrate the efficacy of our decentralized precoders, we provide implementation results on a multi-GPU system, which show that our solutions achieve throughputs in the Gbit/s regime while achieving (near-)optimal error-rate performance in the massive MU-MIMO downlink.
  4. Massive multiuser (MU) multiple-input multiple-output (MIMO) promises significant improvements in spectral efficiency compared to small-scale MIMO. Typical massive MU-MIMO base-station (BS) designs rely on centralized linear data detectors and precoders which entail excessively high complexity, interconnect data rates, and chip input/output (I/O) bandwidth when executed on a single computing fabric. To resolve these complexity and bandwidth bottlenecks, we propose new decentralized algorithms for data detection and precoding that use coordinate descent. Our methods parallelize computations across multiple computing fabrics, while minimizing interconnect and I/O bandwidth. The proposed decentralized algorithms achieve near-optimal error-rate performance and multi-Gbps throughput at sub-1 ms latency when implemented on a multi-GPU cluster with half-precision floating-point arithmetic.
  5. A key challenge in 4G and emerging 5G systems is that of reliably detecting the uplink transmissions of users close to the edge between cells. These users are subject to significant signal attenuation due to path loss, and frequent hand-off from one cell to the other, making channel estimation very challenging. Even multiuser detection using base station cooperation often fails to detect such users, due to channel estimation errors and the sensitivity of multiuser detection to near-far power imbalance. Is it even possible to reliably decode the cell-edge users' signals under these circumstances? This paper shows, perhaps surprisingly, that with a suitable base station `interferometry' strategy, the cell-edge users' signals can be reliably decoded at low SNR under mild conditions. Exploiting the fact that cell-edge users' signals are weak but common to both base stations, while users close to a base station are unique to that base station, reliable detection is enabled by Canonical Correlation Analysis (CCA) - a machine learning technique that reliably estimates a common subspace, even in the presence of strong individual interference. Free from cell-center interference, the resulting mixture of cell-edge signals can then be unraveled using well-known algebraic signal processing techniques. Simulations demonstrate that themore »proposed detector achieves order of magnitude BER improvement compared to an `oracle' zero-forcing with successive interference cancellation that assumes perfect knowledge of all channels. The paper also includes proof of common subspace identifiability for the assumed generative model, which was curiously missing from the machine learning / CCA literature.« less