Broadening participation in engineering among underrepresented minority students remains a big challenge for institutions of higher education. Since a large majority of underrepresented students attend community colleges, engineering transfer programs at these community colleges can play an important role in addressing this challenge. However, for most community college engineering programs, developing strategies and programs to increase the number and diversity of students successfully pursuing careers in engineering is especially challenging due to limited expertise, shrinking resources, and continuing budget crises. This paper is a description of how a small engineering transfer program at a Hispanic-Serving community college in California developed effective partnerships with high schools, other institutions of higher education, and industry partners in order to create opportunities for underrepresented community college students to excel in engineering. Developed through these partnerships are programs for high school students, current community college students, and community college engineering faculty. Programs for high school students include a) the Summer Engineering Institute – a two-week residential summer camp for sophomore and junior high school students, and b) the STEM Institute – a three-week program for high school freshmen to explore STEM fields. Academic and support programs for college students include: a) Math Jam – amore »
Keeping Data Science Broad: Negotiating the Digital and Data Divide Among Higher-Education Institutions
A report summarizing the “Keeping Data Science Broad” series including data science challenges, visions for the future, and community asks. The goal of the Keeping Data Science Broad series was to garner community input into pathways for keeping data science education broadly inclusive across sectors, institutions, and populations. Input was collected from a community input survey, three webinars (Data Science in the Traditional Context, Alternative Avenues for Development of Data Science Education Capacity, and Big Picture for a Big Data Science Education Network available to view through the South Big Data Hub YouTube channel) and an interactive workshop (Negotiating the Digital and Data Divide). Through these venues, we explore the future of data science education and workforce at institutions of higher learning that are primarily teaching-focused. The workshop included representatives from sixty data science programs across the nation, either traditional or alternative, and from a range of institution types including community colleges, Historically Black Colleges and Universities (HBCU’s), Hispanic-Serving Institutions (HSI’s), other minority-led and minority-serving institutions, liberal arts colleges, tribal colleges, universities, and industry partners.
- Award ID(s):
- 1747961
- Publication Date:
- NSF-PAR ID:
- 10075971
- Journal Name:
- Workshop: Bridging the Digital and Data Divide
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
There is a critical need for more students with engineering and computer science majors to enter into, persist in, and graduate from four-year postsecondary institutions. Increasing the diversity of the workforce by inclusive practices in engineering and science is also a profound identified need. According to national statistics, the largest groups of underrepresented minority students in engineering and science attend U.S. public higher education institutions. Most often, a large proportion of these students come to colleges and universities with unique challenges and needs, and are more likely to be first in their family to attend college. In response to these needs, engineering education researchers and practitioners have developed, implemented and assessed interventions to provide support and help students succeed in college, particularly in their first year. These interventions typically target relatively small cohorts of students and can be managed by a small number of faculty and staff. In this paper, we report on “work in progress” research in a large-scale, first-year engineering and computer science intervention program at a public, comprehensive university using multivariate comparative statistical approaches. Large-scale intervention programs are especially relevant to minority serving institutions that prepare growing numbers of students who are first in their family tomore »
-
We evaluated the efficacy of a technical assistance (TA) model for increasing the competitiveness of historically Black colleges and universities (HBCUs) and other minority-serving institutions (MSI) seeking funding to expand their teacher training through the National Science Foundation (NSF)’s Robert Noyce Teacher Scholarship (Noyce) Program. The Noyce Program addresses the President’s Council of Advisors on Science and Technology (PCAST) goal to support at least 100,000 new STEM middle and high school teachers. The Quality Education for Minorities (QEM) Network engaged in a series of strategies to broaden participation of Noyce to MSIs, with the long-term goal of diversifying the pipeline of new STEM teachers. Results found that of the 335 active Noyce awards, 39 were awards to MSIs. Of the 39, 23 (59%) were awarded to institutions represented in at least one QEM Noyce TA workshop. This study looks at the potential of TA models for HBCUs and MSIs to generalize across a spectrum of initiatives aimed at strengthening the nation’s teacher education programs, and graduating quality STEM teachers.
-
Modern societies rely extensively on computing technologies. As such, there is a need to identify and develop strategies for addressing fairness, ethics, accountability, and transparency (FEAT) in computing-based research, practice, and educational efforts. To achieve this aim, a workshop, funded by the National Science Foundation, convened a working group of experts to document best practices and integrate disparate approaches to FEAT. The working group included different disciplines, demographics, and institutional types, including large research-intensive universities, Historically Black Colleges and Universities, Hispanic-Serving Institutions, teaching institutions, and liberal arts colleges. The workshop brought academics and members of industry together along with government representatives, which is vitally important given the role and impact that each sector can have on the future of computing. Relevant insights were gained by drawing on the experience of policy scholars, lawyers, statisticians, sociologists, and philosophers along with the more traditional sources of expertise in the computing realm (such as computer scientists and engineers). The working group examined best practices and sought to articulate strategies for addressing FEAT in computing-based research and education. This included identifying methodological approaches that researchers could employ to facilitate FEAT, instituting guidelines on what problem definition practices work best, and highlighting best practices formore »
-
At San Francisco State University, a Hispanic Serving Institute and a Primarily Undergraduate Institution, 67% of engineering students are from ethnic minority groups, with only 27% of Hispanic students retained and graduated in their senior year. Additionally, only 14% of students reported full-time employment secured at the time of graduation. Of these secured jobs, only 54% were full-time positions (40+ hours a week). To improve the situation, San Francisco State University, in collaboration with two local community colleges, Skyline and Cañada Colleges, was recently funded by the National Science Foundation through a Hispanic Serving Institute Improving Undergraduate STEM Education Strengthening Student Motivation and Resilience through Research and Advising program to enhance undergraduate engineering education and build capacity for student success. This project will use a data-driven and evidence-based approach to identify the barriers to the success of underrepresented minority students and to generate new knowledge on the best practices for increasing students’ retention and graduation rates, self- efficacy, professional development, and workforce preparedness. Three objectives underpin this overall goal. The first is to develop and implement a Summer Research Internship Program together with community college partners. The second is to establish an HSI Engineering Success Center to provide students withmore »