skip to main content

Title: Social Media in Citizen-Led Disaster Response: Rescuer Roles, Coordination Challenges, and Untapped Potential
Widespread disasters can overload official agencies’ capacity to provide assistance, and often citizen-led groups emerge to assist with disaster response. As social media platforms have expanded, emergent rescue groups have many ways to harness network and mobile tools to coordinate actions and help fellow citizens. This study used semi-structured interviews and photo elicitation techniques to better understand how wide-scale rescues occurred during the 2017 Hurricane Harvey flooding in the Greater Houston, Texas USA area. We found that citizens used diverse apps and social media-related platforms during these rescues and that they played one of three roles: rescuer, dispatcher, or information compiler. The key social media coordination challenges these rescuers faced were incomplete feedback loops, unclear prioritization, and communication overload. This work-in-progress paper contributes to the field of crisis and disaster response research by sharing the nuances in how citizens use social media to respond to calls for help from flooding victims.
Authors:
; ; ; ;
Award ID(s):
1760453
Publication Date:
NSF-PAR ID:
10076203
Journal Name:
Proceedings of the ... International ISCRAM Conference
ISSN:
2411-3387
Sponsoring Org:
National Science Foundation
More Like this
  1. When wide-scale flooding occurs in a community not accustomed to floods, health concerns emerge. While official organizations tasked with communicating emerging health information exist, the proliferation of social media makes it possible for average citizens to participate in this conversation. This study used a combination of semi-structured interviews and photo elicitation techniques to explore how citizens used private social media sites to share health information. We found two main categories of health concerns: existing medical conditions and water-created. We further identified six themes that describe the common approaches average citizens used to share health information: Narrating a personal experience, presentingmore »it as a Public Service Announcement, downplaying the contribution, bringing a credible source into the conversation, including external links and sources, and using humor. Together, these findings suggest that citizens need health information during a flood disaster, and when they do not have it available from official sources, they use their private social media to tap into a shared community identity and carefully help one another.« less
  2. Delivering the right information to the right people in a timely manner can greatly improve outcomes and save lives in emergency response. A communication framework that flexibly and efficiently brings victims, volunteers, and first responders together for timely assistance can be very helpful. With the burden of more frequent and intense disaster situations and first responder resources stretched thin, people increasingly depend on social media for communicating vital information. This paper proposes ONSIDE, a framework for coordination of disaster response leveraging social media, integrating it with Information-Centric dissemination for timely and relevant dissemination. We use a graph-based pub/sub namespace thatmore »captures the complex hierarchy of the incident management roles. Regular citizens and volunteers using social media may not know of or have access to the full namespace. Thus, we utilize a social media engine (SME) to identify disaster-related social media posts and then automatically map them to the right name(s) in near-real-time. Using NLP and classification techniques, we direct the posts to appropriate first responder(s) that can help with the posted issue. A major challenge for classifying social media in real-time is the labeling effort for model training. Furthermore, as disasters hits, there may be not enough data points available for labeling, and there may be concept drift in the content of the posts over time. To address these issues, our SME employs stream-based active learning methods, adapting as social media posts come in. Preliminary evaluation results show the proposed solution can be effective.« less
  3. With the increase of natural disasters all over the world, we are in crucial need of innovative solutions with inexpensive implementations to assist the emergency response systems. Information collected through conventional sources (e.g., incident reports, 911 calls, physical volunteers, etc.) are proving to be insufficient [1]. Responsible organizations are now leaning towards research grounds that explore digital human connectivity and freely available sources of information. U.S. Geological Survey and Federal Emergency Management Agency (FEMA) introduced Critical Lifeline (CLL) s which identifies the most significant areas that require immediate attention in case of natural disasters. These organizations applied crowdsourcing by connectingmore »digital volunteer networks to collect data on the critical lifelines from data sources including social media [3], [4], [5]. In the past couple of years, during some of the deadly hurricanes (e.g., Harvey, IRMA, Maria, Michael, Florence, etc.), people took on different social media platforms like never seen before, in search of help for rescue, shelter, and relief. Their posts reflect crisis updates and their real-time observations on the devastation that they witness. In this paper, we propose a methodology to build and analyze time-frequency features of words on social media to assist the volunteer networks in identifying the context before, during and after a natural disaster and distinguishing contexts connected to the critical lifelines. We employ Continuous Wavelet Transform to help create word features and propose two ways to reduce the dimensions which we use to create word clusters to identify themes of conversations associated with stages of a disaster and these lifelines. We compare two different methodologies of wavelet features and word clusters both qualitatively and quantitatively, to show that wavelet features can identify and separate context without using semantic information as inputs.« less
  4. During disaster events, emergency response teams need to draw up the response plan at the earliest possible stage. Social media platforms contain rich information which could help to assess the current situation. In this paper, a novel multi-task multimodal deep learning framework with automatic loss weighting is proposed. Our framework is able to capture the correlation among different concepts and data modalities. The proposed automatic loss weighting method can prevent the tedious manual weight tuning process and improve the model performance. Extensive experiments on a large-scale multimodal disaster dataset from Twitter are conducted to identify post-disaster humanitarian category and infrastructuremore »damage level. The results show that by learning the shared latent space of multiple tasks with loss weighting, our model can outperform all single tasks.« less
  5. For over a decade, social media has proved to be a functional and convenient data source in the Internet of things. Social platforms such as Facebook, Twitter, Instagram, and Reddit have their own styles and purposes. Twitter, among them, has become the most popular platform in the research community due to its nature of attracting people to write brief posts about current and unexpected events (e.g., natural disasters). The immense popularity of such sites has opened a new horizon in `social sensing' to manage disaster response. Sensing through social media platforms can be used to track and analyze natural disastersmore »and evaluate the overall response (e.g., resource allocation, relief, cost and damage estimation). In this paper, we propose a two-step methodology: i) wavelet analysis and ii) predictive modeling to track the progression of a disaster aftermath and predict the time-line. We demonstrate that wavelet features can preserve text semantics and predict the total duration for localized small scale disasters. The experimental results and observations on two real data traces (flash flood in Cummins Falls state park and Arizona swimming hole) showcase that the wavelet features can predict disaster time-line with an error lower than 20% with less than 50% of the data when compared to ground truth.« less