skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Future perspectives of co-simulation in the smart grid domain
The recent attention towards research and development in cyber-physical energy systems has introduced the necessity of emerging multi-domain co-simulation tools. Different educational, research and industrial efforts have been set to tackle the co-simulation topic from several perspectives. The majority of previous works has addressed the standardization of models and interfaces for data exchange, automation of simulation, as well as improving performance and accuracy of co-simulation setups. Furthermore, the domains of interest so far have involved communication, control, markets and the environment in addition to physical energy systems. However, the current characteristics and state of co-simulation testbeds need to be re-evaluated for future research demands. These demands vary from new domains of interest, such as human and social behavior models, to new applications of co-simulation, such as holistic prognosis and system planning. This paper aims to formulate these research demands that can then be used as a road map and guideline for future development of co-simulation in cyber-physical energy systems.  more » « less
Award ID(s):
1743772
PAR ID:
10076284
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
2018 IEEE International Energy Conference (ENERGYCON)
Page Range / eLocation ID:
1 to 6
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Cyber-physical systems (CPS) are smart systems that include engineered interacting networks of physical and computational components. The tight integration of a wide range of heterogeneous components enables new functionality and quality of life improvements in critical infrastructures such as smart cities, intelligent buildings, and smart energy systems. One approach to study CPS uses both simulations and hardware-in-the-loop (HIL) to test the physical dynamics of hardware in a controlled environment. However, because CPS experiment design may involve domain experts from multiple disciplines who use different simulation tool suites, it can be a challenge to integrate the heterogeneous simulation languages and hardware interfaces into a single experiment. The National Institute of Standards and Technology (NIST) is working on the development of a universal CPS environment for federation (UCEF) that can be used to design and run experiments that incorporate heterogeneous physical and computational resources over a wide geographic area. This development environment uses the High Level Architecture (HLA), which the Department of Defense has advocated for co-simulation in the field of distributed simulations, to enable communication between hardware and different simulation languages such as Simulink® and LabVIEW®. This paper provides an overview of UCEF and motivates how the environment could be used to develop energy experiments using an illustrative example of an emulated heat pump system. 
    more » « less
  2. Smart grid systems are characterized by high complexity due to interactions between a traditional passive network and active power electronic components, coupled using communication links. Additionally, automation and information technology plays an important role in order to operate and optimize such cyber-physical energy systems with a high(er) penetration of fluctuating renewable generation and controllable loads. As a result of these developments the validation on the system level becomes much more important during the whole engineering and deployment process, today. In earlier development stages and for larger system configurations laboratory-based testing is not always an option. Due to recent developments, simulation-based approaches are now an appropriate tool to support the development, implementation, and roll-out of smart grid solutions. This paper discusses the current state of simulation-based approaches and outlines the necessary future research and development directions in the domain of power and energy systems. 
    more » « less
  3. The gradual deployment of intelligent and coordinated devices in the electrical power system needs careful investigation of the interactions between the various domains involved. Especially due to the coupling between ICT and power systems a holistic approach for testing and validating is required. Taking existing (quasi-) standardised smart grid system and test specification methods as a starting point, we are developing a holistic testing and validation approach that allows a very flexible way of assessing the system level aspects by various types of experiments (including virtual, real, and mixed lab settings). This paper describes the formal holistic test case specification method and applies it to a particular co-simulation experimental setup. The various building blocks of such a simulation (i.e., FMI, mosaik, domain-specific simulation federates) are covered in more detail. The presented method addresses most modeling and specification challenges in cyber-physical energy systems and is extensible for future additions such as uncertainty quantification. 
    more » « less
  4. Owing1 to an immense growth of internet-connected and learning-enabled cyber-physical systems (CPSs) [1], several new types of attack vectors have emerged. Analyzing security and resilience of these complex CPSs is difficult as it requires evaluating many subsystems and factors in an integrated manner. Integrated simulation of physical systems and communication network can provide an underlying framework for creating a reusable and configurable testbed for such analyses. Using a model-based integration approach and the IEEE High-Level Architecture (HLA) [2] based distributed simulation software; we have created a testbed for integrated evaluation of large-scale CPS systems. Our tested supports web-based collaborative metamodeling and modeling of CPS system and experiments and a cloud computing environment for executing integrated networked co-simulations. A modular and extensible cyber-attack library enables validating the CPS under a variety of configurable cyber-attacks, such as DDoS and integrity attacks. Hardware-in-the-loop simulation is also supported along with several hardware attacks. Further, a scenario modeling language allows modeling of alternative paths (Courses of Actions) that enables validating CPS under different what-if scenarios as well as conducting cyber-gaming experiments. These capabilities make our testbed well suited for analyzing security and resilience of CPS. In addition, the web-based modeling and cloud-hosted execution infrastructure enables one to exercise the entire testbed using simply a web-browser, with integrated live experimental results display. 
    more » « less
  5. In the past couple of years, railway infrastructure has been growing more connected, resembling more of a traditional Cyber-Physical System model. Due to the tightly coupled nature between the cyber and physical domains, new attack vectors are emerging that create an avenue for remote hijacking of system components not designed to withstand such attacks. As such, best practice cybersecurity techniques need to be put in place to ensure the safety and resiliency of future railway designs, as well as infrastructure already in the field. However, traditional large-scale experimental evaluation that involves evaluating a large set of variables by running a design of experiments (DOE) may not always be practical and might not provide conclusive results. In addition, to achieve scalable experimentation, the modeling abstractions, simulation configurations, and experiment scenarios must be designed according to the analysis goals of the evaluations. Thus, it is useful to target a set of key operational metrics for evaluation and configure and extend the traditional DOE methods using these metrics. In this work, we present a metrics-driven evaluation approach for evaluating the security and resilience of railway critical infrastructure using a distributed simulation framework. A case study with experiment results is provided that demonstrates the capabilities of our testbed. 
    more » « less