skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Simulation-Based Validation of Smart Grids--Status Quo and Future Research Trends
Smart grid systems are characterized by high complexity due to interactions between a traditional passive network and active power electronic components, coupled using communication links. Additionally, automation and information technology plays an important role in order to operate and optimize such cyber-physical energy systems with a high(er) penetration of fluctuating renewable generation and controllable loads. As a result of these developments the validation on the system level becomes much more important during the whole engineering and deployment process, today. In earlier development stages and for larger system configurations laboratory-based testing is not always an option. Due to recent developments, simulation-based approaches are now an appropriate tool to support the development, implementation, and roll-out of smart grid solutions. This paper discusses the current state of simulation-based approaches and outlines the necessary future research and development directions in the domain of power and energy systems.  more » « less
Award ID(s):
1743772
PAR ID:
10076132
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; « less
Date Published:
Journal Name:
International Conference on Industrial Applications of Holonic and Multi-Agent Systems
Page Range / eLocation ID:
171 - 185
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Most of the traditional state estimation algorithms are provided false alarm when there is attack. This paper proposes an attack-resilient algorithm where attack is automatically ignored, and the state estimation process is continuing which acts a grid-eye for monitoring whole power systems. After modeling the smart grid incorporating distributed energy resources, the smart sensors are deployed to gather measurement information where sensors are prone to attacks. Based on the noisy and cyber attack measurement information, the optimal state estimation algorithm is designed. When the attack is happened, the measurement residual error dynamic goes high and it can ignore using proposed saturation function. Moreover, the proposed saturation function is automatically computed in a dynamic way considering residual error and deigned parameters. Combing the aforementioned approaches, the Kalman filter algorithm is modified which is applied to the smart grid state estimation. The simulation results show that the proposed algorithm provides high estimation accuracy. 
    more » « less
  2. The smart grid provides efficient and cost-effective management of the electric energy grid by allowing real-time monitoring, coordinating, and controlling the system using communication networks between physical components. This inherent complexity significantly increases the vulnerabilities and attack surface in the smart grid due to misconfigurations or the lack of security hardening. Therefore, it is important to ensure a secure and resilient operation of the smart grid by proactive identification of potential threats, impact assessment, and cost-efficient mitigation planning. This paper aims to achieve these goals through the development of an efficient security framework for the Energy Management System (EMS), a core smart grid component. In this paper, we present a framework that combines formal analytic with PowerWorld simulator which verifies the solution model to investigate the feasibility of false data injection attacks against contingency analysis in the power grid. We evaluate the impact of such attacks by running experiments using synthetic data on the standard IEEE test cases. 
    more » « less
  3. With the advent of remarkable development of solar power panel and inverter technology and focus on reducing greenhouse emissions, there is increased migration from fossil fuels to carbon-free energy sources (e.g., solar, wind, and geothermal). A new paradigm called Transactive Energy (TE) [3] has emerged that utilizes economic and control techniques to effectively manage Distributed Energy Resources (DERs). Another goal of TE is to improve grid reliability and efficiency. However, to evaluate various TE approaches, a comprehensive simulation tool is needed that is easy to use and capable of simulating the power-grid along with various grid operational scenarios that occur in the transactive energy paradigm. In this research, we present a web-based design and simulation platform (called a design studio) targeted toward evaluation of power-grid distribution system and transactive energy approaches [1]. The design studio allows to edit and visualize existing power-grid models graphically, create new power-grid network models, simulate those networks, and inject various scenario-specific perturbations to evaluate specific configurations of transactive energy simulations. The design studio provides (i) a novel Domain-Specific Modeling Language (DSML) using the Web-based Generic Modeling Environment (WebGME [4]) for the graphical modeling of power-grid, cyber-physical attacks, and TE scenarios, and (ii) a reusable cloud-hosted simulation backend using the Gridlab-D power-grid distribution system simulation tool [2]. 
    more » « less
  4. Power grids are undergoing major changes due to the rapid adoption of intermittent renewable energy resources and the increased availability of energy storage devices. These trends drive smart-grid operators to envision a future where peer-to-peer energy trading occurs within microgrids, leading to the development of Transactive Energy Systems. Blockchains have garnered significant interest from both academia and industry for their potential application in decentralized TES, in large part due to their high level of resilience. In this paper, we introduce a novel class of attacks against blockchain based TES, which target the gateways that connect market participants to the system. We introduce a general model of blockchain based TES and study multiple threat models and attack strategies. We also demonstrate the impact of these attacks using a testbed based on GridLAB-D and a private Ethereum network. Finally, we study how to mitigate these attack. 
    more » « less
  5. The fast-growing installation of solar PVs has a significant impact on the operation of distribution systems. Grid-tied solar inverters provide reactive power capability to support the voltage profile in a distribution system. In comparison with traditional inverters, smart inverters have the capability of real time remote control through digital communication interfaces. However, cyberattack has become a major threat with the deployment of Information and Communications Technology (ICT) in a smart grid. The past cyberattack incidents have demonstrated how attackers can sabotage a power grid through digital communication systems. In the worst case, numerous electricity consumers can experience a major and extended power outage. Unfortunately, tracking techniques are not efficient for today’s advanced communication networks. Therefore, a reliable cyber protection system is a necessary defense tool for the power grid. In this paper, a signature-based Intrusion Detection System (IDS) is developed to detect cyber intrusions of a distribution system with a high level penetration of solar energy. To identify cyberattack events, an attack table is constructed based on the Temporal Failure Propagation Graph (TFPG) technique. It includes the information of potential cyberattack patterns in terms of attack types and time sequence of anomaly events. Once the detected anomaly events are matched with any of the predefined attack patterns, it is judged to be a cyberattack. Since the attack patterns are distinguishable from other system failures, it reduces the false positive rate. To study the impact of cyberattacks on solar devices and validate the performance of the proposed IDS, a realistic Cyber-Physical System (CPS) simulation environment available at Virginia Tech (VT) is used to develop an interconnection between the cyber and power system models. The CPS model demonstrates how communication system anomalies can impact the physical system. The results of two example cyberattack test cases are obtained with the IEEE 13 node test feeder system and the power system simulator, DIgSILENT PowerFactory. 
    more » « less