Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
When electrified transit systems make grid aware choices, improved social welfare is achieved by scheduling charging at low grid impact locations and times causing reduced loss, minimal power quality issues and reduced grid stress. Electrifying transit fleet has numerous challenges like non availability of buses during charging, varying charging costs, etc., that are related the electric grid behavior. However, transit systems do not have access to the information about the co-evolution of the grid’s power flow and therefore cannot account for the power grid’s needs in its day to day operation. In this paper we propose a framework of transportation-grid co-simulation analyzing the spatio-temporal interaction between the transit operations with electric buses and the power distribution grid. Real-world data for a day’s traffic from Chattanooga city’s transit system is simulated in SUMO and integrated with a realistic distribution grid simulation (using GridLAB-D) to understand the grid impact due to the transit electrification. Charging information is obtained from the transportation simulation to feed into grid simulation to assess the impact of charging. We also discuss the impact to the grid with higher degree of Transit electrification that further necessitates such an integrated Transportation-Grid co-simulation to operate the integrated system optimally. Our future work includes extending the platform for optimizing the charging and trip assignment operations.more » « less
-
Ridesourcing advocates and companies promise many benefits to cities, such as increased accessibility, a solution to the last-mile transit problem, and even reduced need for automobiles. However, an important body of research has indicated that ridesourcing is more heavily used by more privileged consumers and in more affluent and whiter neighborhoods. Questions have also emerged about the effects of ridesourcing on public transportation. This study builds on a mobility disparities perspective by analyzing ridesourcing in the context of urban inequality, including gentrification and displacement. Using a large data set from the Chicago area, this study shows that ridesourcing is associated with areas that have seen rising rents and have become whiter and more educated. The results also show that ridesourcing is more prevalent in areas that are accessible by public transportation. Although the causal relationship between ridesourcing and gentrification is complex, the study suggests a new direction in the literature that embeds the analysis of ridesourcing in the broader frameworks of unequal urban development and neoliberalization. The study also suggests policy approaches that could help to reduce some of the connections between ridesourcing and urban inequity.more » « less
-
Min-max optimization is emerging as a key framework for analyzing problems of robustness to strategically and adversarially generated data. We propose the random reshuffling-based gradient-free Optimistic Gradient Descent-Ascent algorithm for solving convex-concave min-max problems with finite sum structure. We prove that the algorithm enjoys the same convergence rate as that of zeroth-order algorithms for convex minimization problems. We deploy the algorithm to solve the distributionally robust strategic classification problem, where gradient information is not readily available, by reformulating the latter into a finite dimensional convex concave min-max problem. Through illustrative simulations, we observe that our proposed approach learns models that are simultaneously robust against adversarial distribution shifts and strategic decisions from the data sources, and outperforms existing methods from the strategic classification literature.more » « less
-
Glückler, Johannes ; Meyer, Heinz-Dieter ; Suarsana, Laura (Ed.)This study contributes to the analysis of civil society and knowledge by examining mobilizations by civil society organizations and grassroots networks in opposition to wireless smart meters in the United States. Three types of mobilizations are reviewed: grassroots anti-smart-meter networks, privacy organizations, and organizations that advocate for reduced exposure to non-ionizing electromagnetic fields. The study shows different relationships to scientific knowledge that include publicizing risks and conducting citizen science, identifying non-controversial areas of future research, and pointing to deeper problems of undone science (a particular type of non-knowledge that emerges when actors mobilize in the public interest and find an absence or low volume of research that could have been used to support their concerns). By comparing different types of knowledge claims made by the civil society organizations and networks, the study examines the conditions under which mobilized civil society generates positive responses from incumbent organizations versus resistance and undone science.more » « less
-
null (Ed.)This study develops a comparative, sociotechnical design perspective for interdisciplinary teams of social scientists and computer scientists. Sociotechnical design refers to identifying both technical and governance challenges and to understanding the ways in which the two types of problems affect and define each other. Approaching design as an open-ended, iterative process, the study develops a triple comparative perspective to problem finding and solutions: across two types of technological systems (the smart grid and connected and automated vehicles), three areas of societal implication and values (safety, equity, and privacy), and two continents (North America and Europe with a focus on the U.S. and Germany). The study then describes the implementation in an international collaboration of research and teaching. The collaborative experience and comparative research provide insights into the salience of the values across technological systems, portability of solutions across technological systems, and potential for policy harmonization across countries.more » « less
-
Decentralized planning for multi-agent systems, such as fleets of robots in a search-and-rescue operation, is often constrained by limitations on how agents can communicate with each other. One such limitation is the case when agents can communicate with each other only when they are in line-of-sight (LOS). Developing decentralized planning methods that guarantee safety is difficult in this case, as agents that are occluded from each other might not be able to communicate until it’s too late to avoid a safety violation. In this paper, we develop a decentralized planning method that explicitly avoids situations where lack of visibility of other agents would lead to an unsafe situation. Building on top of an existing Rapidly exploring Random Tree (RRT)-based approach, our method guarantees safety at each iteration. Simulation studies show the effectiveness of our method and compare the degradation in performance with respect to a clairvoyant decentralized planning algorithm where agents can communicate despite not being in LOS of each other.more » « less
-
null (Ed.)Utilities and local power providers throughout the world have recognized the advantages of the "smart grid" to encourage consumers to engage in greater energy efficiency. The digitalization of electricity and the consumer interface enables utilities to develop pricing arrangements that can smooth peak load. Time-varying price signals can enable devices associated with heating, air conditioning, and ventilation (HVAC) systems to communicate with market prices in order to more efficiently configure energy demand. Moreover, the shorter time intervals and greater collection of data can facilitate the integration of distributed renewable energy into the power grid. This study contributes to the understanding of time-varying pricing using a model that examines the extent to which transactive energy can reduce economic costs of an aggregated group of households with varying levels of distributed solar energy. It also considers the potential for transactive energy to smooth the demand curve.more » « less
-
null (Ed.)The increasing use of automated decision making (ADM) and machine learning sparked an ongoing discussion about algorithmic accountability. Within computer science, a new form of producing accountability has been discussed recently: causality as an expression of algorithmic accountability, formalized using structural causal models (SCMs). However, causality itself is a concept that needs further exploration. Therefore, in this contribution we confront ideas of SCMs with insights from social theory, more explicitly pragmatism, and argue that formal expressions of causality must always be seen in the context of the social system in which they are applied. This results in the formulation of further research questions and directions.more » « less