skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Porous silaphosphorene, silaarsenene and silaantimonene: a sweet marriage of Si and P/As/Sb
Inspired by the recent experimental realization of pnictogen–silicon analogues of benzene and great interest in silicene, phosphorene and their heavier counterparts, herein we designed three planar porous 2D nanomaterials, namely porous silaphosphorene (pSiP), silaarsenene (pSiAs) and silaantimonene (pSiSb), and systematically investigated their stability, and electronic and optical properties, as well as their potential as photocatalysts for water splitting. Porous silaphosphorene, silaarsenene and silaantimonene monolayers are all thermodynamically, dynamically and thermally stable, and the aromaticity in each six-membered Si 3 P 3 /Si 3 As 3 /Si 3 Sb 3 ring plays an important role in their enhanced stability. They are all semiconductors with direct band gaps of 1.93, 1.57 and 0.95 eV (HSE06) and have comparable carrier mobility to MoS 2 . Their good stability and exceptional electronic and optical properties make them promising candidates for applications in solar cells and other optoelectronics fields. Moreover, the suitable band edge alignments of pSiP and pSiAs monolayers endow them with potential applications as photocatalysts for water splitting.  more » « less
Award ID(s):
1736093
PAR ID:
10076510
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Journal of Materials Chemistry A
Volume:
6
Issue:
8
ISSN:
2050-7488
Page Range / eLocation ID:
3738 to 3746
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Oxides of p-block metals (e.g., indium oxide) and semimetals (e.g., antimony oxide) are of broad practical interest as transparent conductors and light absorbers for solar photoconversion due to the tunability of their electronic conductivity and optical absorption. Comparatively, these oxides have found limited applications in solar-to-hydrogen photocatalysis primarily due to their high electronegativity, which impedes electron transfer for converting protons into molecular hydrogen. We have shown recently that inserting s-block metal cations into p-block oxides is effective at lowering electronegativities while affording further control of band gaps. Here, we explain the origins of this dual tunability by demonstrating the mediator role of s-block metal cations in modulating orbital hybridization while not contributing to frontier electronic states. From this result, we carry out a comprehensive computational study of 109 ternary oxides of s- and p-block metal elements as candidate photocatalysts for solar hydrogen generation. We downselect the most desirable materials using band gaps and band edges obtained from Hubbard-corrected density-functional theory with Hubbard parameters computed entirely from first principles, evaluate the stability of these oxides in aqueous conditions, and characterize experimentally four of the remaining materials, synthesized with high phase uniformity, to assess the accuracy of computational predictions. We thus propose seven oxide semiconductors, including CsIn3O5, Sr2In2O5, and KSbO2 which, to the extent of our literature review, have not been previously considered as water-splitting photocatalysts. 
    more » « less
  2. null (Ed.)
    Abstract We report a combined experimental and computational study of the optical properties of individual silicon telluride (Si 2 Te 3 ) nanoplates. The p-type semiconductor Si 2 Te 3 has a unique layered crystal structure with hexagonal closed-packed Te sublattices and Si–Si dimers occupying octahedral intercalation sites. The orientation of the silicon dimers leads to unique optical and electronic properties. Two-dimensional Si 2 Te 3 nanoplates with thicknesses of hundreds of nanometers and lateral sizes of tens of micrometers are synthesized by a chemical vapor deposition technique. At temperatures below 150 K, the Si 2 Te 3 nanoplates exhibit a direct band structure with a band gap energy of 2.394 eV at 7 K and an estimated free exciton binding energy of 150 meV. Polarized reflection measurements at different temperatures show anisotropy in the absorption coefficient due to an anisotropic orientation of the silicon dimers, which is in excellent agreement with theoretical calculations of the dielectric functions. Polarized Raman measurements of single Si 2 Te 3 nanoplates at different temperatures reveal various vibrational modes, which agree with density functional perturbation theory calculations. The unique structural and optical properties of nanostructured Si 2 Te 3 hold great potential applications in optoelectronics and chemical sensing. 
    more » « less
  3. Abstract Data‐intensive discovery of water‐splitting catalysts can accelerate the development of sustainable energy technologies, such as the photocatalytic and/or electrocatalytic production of renewable hydrogen fuel. Through computational screening, 13 materials were recently predicted as potential water‐splitting photocatalysts: Cu3NbS4, CuYS2, SrCu2O2, CuGaO2, Na3BiO4,Sr2PbO4, LaCuOS, LaCuOSe, Na2TeO4, La4O4Se3, Cu2WS4, BaCu2O2, and CuAlO2. Herein, these materials are synthesized, their bandgaps and band alignments are experimentally determined, and their photoelectrocatalytic hydrogen evolution properties are assessed. Using cyclic voltammetry and chopped illumination experiments, 9 of the 13 materials are experimentally found to have bandgaps and band alignments that straddle the potentials required for the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER), as computationally predicted. During photocatalytic testing, 12 of the materials yield a measurable photocurrent. However, only three are found to be active for the HER, with Cu3NbS4, CuYS2, and Cu2WS4producing H2in amounts comparable to bare TiO2; a benchmark photocatalyst. This study provides experimental validation of computational bandgap and band alignment predictions while also successfully identifying active photocatalysts. 
    more » « less
  4. Recently, 2D tellurene (Te) structures have been experimentally synthesized. These structures possess high carrier mobility and stability which make them ideal candidates for applications in electronics, optoelectronics and energy devices. We performed density functional theory (DFT) and molecular dynamics (MD) simulations to investigate the stability and electronic structure of 2D α- and β-Te sheets, and hydrogen, oxygen, and fluorine functionalized counterparts, including spin–orbit coupling effects. Our calculations show that bare α and β-Te sheets are stable with band gaps of 0.44 eV and 1.02 eV respectively. When functionalized, α and β monolayers exhibit metallic properties, except for hydrogenated β-Te, which exhibits semiconducting properties with a band gap of 1.37 eV. We see that H, O and F destabilize the structure of α-Te. We also find that F and H cause β-Te layers to separate into functionalized atomic chains and O causes β-Te to transform into a Te 3 O 2 -like structure. We also studied single atom and molecule binding on the Te surface, the effects of adatom coverage, and the effects of functionalized Te on a GaSe substrate. Our results indicate that tellurene monolayers and functionalized counterparts are not only suitable for future optoelectronic devices, but can be used as metallic contacts in nanoscale junctions. 
    more » « less
  5. null (Ed.)
    Orthorhombic BaZrS 3 is a potential optoelectronic material with prospective applications in photovoltaic and thermoelectric devices. While efforts exist on understanding the effects of elemental substitution and material stability, fundamental knowledge on the electronic transport properties are sparse. We employ first principles calculations to examine the electronic band structure and optical band gap and interrogate the effect of electron transport on electrical and thermal conductivities, and Seebeck coefficient, as a function of temperature and chemical potential. Our results reveal that BaZrS 3 has a band gap of 1.79 eV in proximity of the optimal 1.35 eV recommended for single junction photovoltaics. An absorption coefficient of 3 × 10 5 cm −1 at photon energies of 3 eV is coupled with an early onset to optical absorption at 0.5 eV, significantly below the optical band gap. The carrier effective mass being lower for electrons than holes, we find the Seebeck coefficient to be higher for holes than electrons. A notable (≈1.0 at 300 K) upper limit to the thermoelectric figure of merit, obtained due to high Seebeck coefficient (3000 μV K −1 ) and ultra-low electron thermal conductivity, builds promise for BaZrS 3 as a thermoelectric. 
    more » « less