skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: CNN Driven Sparse Multi-Level B-Spline Image Registration
Traditional single-grid and pyramidal B-spline parameterizations used in deformable image registration require users to specify control point spacing configurations capable of accurately capturing both global and complex local deformations. In many cases, such grid configurations are non-obvious and largely selected based on user experience. Recent regularization methods imposing sparsity upon the B-spline coefficients throughout simultaneous multi-grid optimization, however, have provided a promising means of determining suitable configurations automatically. Unfortunately, imposing sparsity on over-parameterized B-spline models is computationally expensive and introduces additional difficulties such as undesirable local minima in the B-spline coefficient optimization process. To overcome these difficulties in determining B-spline grid configurations, this paper investigates the use of convolutional neural networks (CNNs) to learn and infer expressive sparse multi-grid configurations prior to B-spline coefficient optimization. Experimental results show that multi-grid configurations produced in this fashion using our CNN based approach provide registration quality comparable to L1-norm constrained over-parameterizations in terms of exactness, while exhibiting significantly reduced computational requirements.  more » « less
Award ID(s):
1642380 1553436
PAR ID:
10076787
Author(s) / Creator(s):
;
Date Published:
Journal Name:
The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
Page Range / eLocation ID:
9281-9289
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract Box delivery is a complicated task and it is challenging to predict the box delivery motion associated with the box weight, delivering speed, and location. This paper presents a single task-based inverse dynamics optimization method for determining the planar symmetric optimal box delivery motion (multi-task jobs). The design variables are cubic B-spline control points of joint angle profiles. The objective function is dynamic effort, i.e., the time integral of the square of all normalized joint torques. The optimization problem includes various constraints. Joint angle profiles are validated through experimental results using root-mean-square-error (RMSE) and Pearson’s correlation coefficient. This research provides a practical guidance to prevent injury risks in joint torque space for workers who lift and deliver heavy objects in their daily jobs. 
    more » « less
  2. Face registration is a major and critical step for face analysis. Existing facial activity recognition systems often employ coarse face alignment based on a few fiducial points such as eyes and extract features from equal-sized grid. Such extracted features are susceptible to variations in face pose, facial deformation, and person-specific geometry. In this work, we propose a novel face registration method named facial grid transformation to improve feature extraction for recognizing facial Action Units (AUs). Based on the transformed grid, novel grid edge features are developed to capture local facial motions related to AUs. Extensive experiments on two wellknown AU-coded databases have demonstrated that the proposed method yields significant improvements over the methods based on equal-sized grid on both posed and more importantly, spontaneous facial displays. Furthermore, the proposed method also outperforms the state-of-the-art methods using either coarse alignment or mesh-based face registration. 
    more » « less
  3. We develop a sparse image reconstruction method for Poisson-distributed polychromatic X-ray computed tomography (CT) measurements under the blind scenario where the material of the inspected object and the incident energy spectrum are unknown. We employ our mass-attenuation spectrum parameterization of the noiseless measurements for single-material objects and express the mass-attenuation spectrum as a linear combination of B-spline basis functions of order one. A block coordinate-descent algorithm is developed for constrained minimization of a penalized Poisson negative log-likelihood (NLL) cost function, where constraints and penalty terms ensure nonnegativity of the spline coefficients and nonnegativity and sparsity of the density-map image; the image sparsity is imposed using a convex total-variation (TV) norm penalty term. This algorithm alternates between a Nesterov’s proximal-gradient (NPG) step for estimating the density-map image and a limited-memory Broyden-Fletcher-Goldfarb-Shanno with box constraints (L-BFGS-B) step for estimating the incident-spectrum parameters. We establish conditions for biconvexity of the penalized NLL objective function, which, if satisfied, ensures monotonicity of the NPG-BFGS iteration. We also show that the penalized NLL objective satisfies the Kurdyka-Łojasiewicz property, which is important for establishing local convergence of block-coordinate descent schemes in biconvex optimization problems. Simulation examples demonstrate the performance of the proposed scheme. 
    more » « less
  4. Ocean mesoscale eddies are often poorly represented in climate models, and therefore, their effects on the large scale circulation must be parameterized. Traditional parameterizations, which represent the bulk effect of the unresolved eddies, can be improved with new subgrid models learned directly from data. Zanna and Bolton (ZB20) applied an equation‐discovery algorithm to reveal an interpretable expression parameterizing the subgrid momentum fluxes by mesoscale eddies through the components of the velocity‐gradient tensor. In this work, we implement the ZB20 parameterization into the primitive‐equation GFDL MOM6 ocean model and test it in two idealized configurations with significantly different dynamical regimes and topography. The original parameterization was found to generate excessive numerical noise near the grid scale. We propose two filtering approaches to avoid the numerical issues and additionally enhance the strength of large‐scale energy backscatter. The filtered ZB20 parameterizations led to improved climatological mean state and energy distributions, compared to the current state‐of‐the‐art energy backscatter parameterizations. The filtered ZB20 parameterizations are scale‐aware and, consequently, can be used with a single value of the non‐dimensional scaling coefficient for a range of resolutions. The successful application of the filtered ZB20 parameterizations to parameterize mesoscale eddies in two idealized configurations offers a promising opportunity to reduce long‐standing biases in global ocean simulations in future studies. 
    more » « less
  5. Abstract This paper is motivated by studying differential brain activities to multiple experimental condition presentations in intracranial electroencephalography (iEEG) experiments. Contrasting effects of experimental conditions are often zero in most regions and nonzero in some local regions, yielding locally sparse functions. Such studies are essentially a function-on-scalar regression problem, with interest being focused not only on estimating nonparametric functions but also on recovering the function supports. We propose a weighted group bridge approach for simultaneous function estimation and support recovery in function-on-scalar mixed effect models, while accounting for heterogeneity present in functional data. We use B-splines to transform sparsity of functions to its sparse vector counterpart of increasing dimension, and propose a fast nonconvex optimization algorithm using nested alternative direction method of multipliers (ADMM) for estimation. Large sample properties are established. In particular, we show that the estimated coefficient functions are rate optimal in the minimax sense under the L2 norm and resemble a phase transition phenomenon. For support estimation, we derive a convergence rate under the norm that leads to a selection consistency property under δ-sparsity, and obtain a result under strict sparsity using a simple sufficient regularity condition. An adjusted extended Bayesian information criterion is proposed for parameter tuning. The developed method is illustrated through simulations and an application to a novel iEEG data set to study multisensory integration. 
    more » « less