skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1553436

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Traditional single-grid and pyramidal B-spline parameterizations used in deformable image registration require users to specify control point spacing configurations capable of accurately capturing both global and complex local deformations. In many cases, such grid configurations are non-obvious and largely selected based on user experience. Recent regularization methods imposing sparsity upon the B-spline coefficients throughout simultaneous multi-grid optimization, however, have provided a promising means of determining suitable configurations automatically. Unfortunately, imposing sparsity on over-parameterized B-spline models is computationally expensive and introduces additional difficulties such as undesirable local minima in the B-spline coefficient optimization process. To overcome these difficulties in determining B-spline grid configurations, this paper investigates the use of convolutional neural networks (CNNs) to learn and infer expressive sparse multi-grid configurations prior to B-spline coefficient optimization. Experimental results show that multi-grid configurations produced in this fashion using our CNN based approach provide registration quality comparable to L1-norm constrained over-parameterizations in terms of exactness, while exhibiting significantly reduced computational requirements. 
    more » « less
  2. In this paper, we present a model to obtain prior knowledge for organ localization in CT thorax images using three dimensional convolutional neural networks (3D CNNs). Specifically, we use the knowledge obtained from CNNs in a Bayesian detector to establish the presence and location of a given target organ defined within a spherical coordinate system. We train a CNN to perform a soft detection of the target organ potentially present at any point, x = [r,Θ,Φ]T. This probability outcome is used as a prior in a Bayesian model whose posterior probability serves to provide a more accurate solution to the target organ detection problem. The likelihoods for the Bayesian model are obtained by performing a spatial analysis of the organs in annotated training volumes. Thoracic CT images from the NSCLC–Radiomics dataset are used in our case study, which demonstrates the enhancement in robustness and accuracy of organ identification. The average value of the detector accuracies for the right lung, left lung, and heart were found to be 94.87%, 95.37%, and 90.76% after the CNN stage, respectively. Introduction of spatial relationship using a Bayes classifier improved the detector accuracies to 95.14%, 96.20%, and 95.15%, respectively, showing a marked improvement in heart detection. This workflow improves the detection rate since the decision is made employing both lower level features (edges, contour etc) and complex higher level features (spatial relationship between organs). This strategy also presents a new application to CNNs and a novel methodology to introduce higher level context features like spatial relationship between objects present at a different location in images to real world object detection problems. 
    more » « less