We propose a method that simultaneously identifies a dynamic model of a building’s temperature in the presence of large, unmeasured disturbances, and a transformed version of the unmeasured disturbance. Our method uses l1-regularization to encourage the identified disturbance to be approximately sparse, which is motivated by the piecewise constant nature of occupancy that determines the disturbance. We test our method using both open-loop and closed-loop simulation data. Results show that the identified model can accurately identify the transfer functions in both scenarios, even in the presence of large disturbances, and even when the disturbance does not satisfy the piecewise-constant property.
more »
« less
Simultaneous identification of dynamic model and occupant-induced disturbance for commercial buildings
A model of a building’s thermal dynamics is needed for prediction-based control. The task of identifying a thermal dynamic model is made challenging by the presence of large unmeasured disturbances, especially the heat gain due to the occupants. In fact, identification of this “occupant-induced load” is also valuable for predictive control—especially in commercial buildings. We propose a method to identify both a model (of resistance-capacitance network type) and the unmeasured disturbances from measured input-output data. The method is based on the insight that the main contributor to the unmeasured disturbance, the occupant-induced load, is piecewise constant, especially in commercial buildings. This can be used to construct an augmented dynamic model so that disturbance estimation is converted to a state estimation problem. An outer-loop optimization identifies the best-fit parameter values. The effectiveness of the method is evaluated using data from a simulation model (under both open and closed-loop operations) and a real building.
more »
« less
- PAR ID:
- 10076822
- Date Published:
- Journal Name:
- Building and environment
- ISSN:
- 0360-1323
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We propose a method that simultaneously identifies a dynamic model of a building’s temperature and a transformed version of the unmeasured disturbance affecting the building. Our method uses l1-regularization to encourage the identified disturbance to be approximately sparse, which is motivated by the piecewise-constant nature of occupancy that determines the disturbance. We test our method on both simulation data (both open-loop and closed-loop), and data from a real building. Results from simulation data show that the proposed method can accurately identify the transfer functions in open and closed-loop scenarios, even in the presence of large disturbances, and even when the disturbance does not satisfy the piecewise-constant property. Results from real building data show that algorithm produces sensible results.more » « less
-
Thermal comfort and energy efficiency are always the two most significant objectives in HVAC operations. However, for conventional HVAC systems, the pursuit of high energy efficiency may be at the expense of satisfactory thermal comfort. Therefore, even if centralized HVAC systems nowadays have higher energy efficiency than before in office buildings, most of them cannot adapt the dynamic occupant behaviors or individual thermal comfort. In order to realize high energy efficiency while still maintain satisfactory thermal environment for occupants indoors, the integrated hybrid HVAC system has been developed for years such as task-ambient conditioning system. Moreover, the occupant-based HVAC control system such as human- in-the-loop has also been investigated so that the system can be adaptive based on occupant behaviors. However, most of research related to personalized air-conditioning system only focuses on field-study with limited scale (i.e. only one office room), this paper has proposed a co- simulation model in energyplus to simulate the hybrid cooling system with synthetic thermal comfort distributions based on global comfort database I&II. An optimization framework on cooling set-point is proposed with the objective of energy performance and the constraints of thermal comfort distribution developed by unsupervised Gaussian mixture model (GMM) clustering and kernel density estimation (KDE). The co-simulation results have illustrated that with the proposed optimization algorithm and the hybrid cooling system, HVAC demand power has decreased 5.3% on average with at least 90% of occupants feeling satisfied.more » « less
-
Occupant-centric HVAC control places a premium on factors including thermal comfort and electricity cost to guarantee occupant satisfaction. Traditional approaches, reliant on static models for occupant behaviors, fall short in capturing intra-day behavioral variations, resulting in imprecise thermal comfort evaluations and suboptimal HVAC energy management, especially in multi-zone systems with diverse occupant profiles. To address this issue, this paper proposes a novel occupant-centric multi-zone HVAC control approach that intelligently schedules cooling and heating setpoints using Multi-agent Deep Reinforcement Learning (MADRL). This approach systematically takes into account stochastic occupant behavior models, such as dynamic clothing insulation adjustments, metabolic rates, and occupancy patterns. Simulation results demonstrate the efficacy of the proposed approach. Comparative case studies show that the proposed MADRL-based, occupant-centric HVAC control reduces electricity costs by 51.09% compared to rule-based approaches and 4.34% compared to single-agent DRL while maintaining multi-zonal thermal comfort for occupants.more » « less
-
null (Ed.)Abstract An autonomous adaptive model predictive control (MPC) architecture is presented for control of heating, ventilation, and air condition (HVAC) systems to maintain indoor temperature while reducing energy use. Although equipment use and occupant changes with time, existing MPC methods are not capable of automatically relearning models and computing control decisions reliably for extended periods without intervention from a human expert. We seek to address this weakness. Two major features are embedded in the proposed architecture to enable autonomy: (i) a system identification algorithm from our prior work that periodically re-learns building dynamics and unmeasured internal heat loads from data without requiring re-tuning by experts. The estimated model is guaranteed to be stable and has desirable physical properties irrespective of the data; (ii) an MPC planner with a convex approximation of the original nonconvex problem. The planner uses a descent and convergent method, with the underlying optimization problem being feasible and convex. A yearlong simulation with a realistic plant shows that both of the features of the proposed architecture—periodic model and disturbance update and convexification of the planning problem—are essential to get performance improvement over a commonly used baseline controller. Without these features, long-term energy savings from MPC can be small while with them, the savings from MPC become substantial.more » « less
An official website of the United States government

