skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Simultaneous identification of linear building dynamic model and disturbance using sparsity-promoting optimization
We propose a method that simultaneously identifies a dynamic model of a building’s temperature and a transformed version of the unmeasured disturbance affecting the building. Our method uses l1-regularization to encourage the identified disturbance to be approximately sparse, which is motivated by the piecewise-constant nature of occupancy that determines the disturbance. We test our method on both simulation data (both open-loop and closed-loop), and data from a real building. Results from simulation data show that the proposed method can accurately identify the transfer functions in open and closed-loop scenarios, even in the presence of large disturbances, and even when the disturbance does not satisfy the piecewise-constant property. Results from real building data show that algorithm produces sensible results.  more » « less
Award ID(s):
1463316 1646229
PAR ID:
10076829
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Automatica
ISSN:
0005-1098
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We propose a method that simultaneously identifies a dynamic model of a building’s temperature in the presence of large, unmeasured disturbances, and a transformed version of the unmeasured disturbance. Our method uses l1-regularization to encourage the identified disturbance to be approximately sparse, which is motivated by the piecewise constant nature of occupancy that determines the disturbance. We test our method using both open-loop and closed-loop simulation data. Results show that the identified model can accurately identify the transfer functions in both scenarios, even in the presence of large disturbances, and even when the disturbance does not satisfy the piecewise-constant property. 
    more » « less
  2. A model of a building’s thermal dynamics is needed for prediction-based control. The task of identifying a thermal dynamic model is made challenging by the presence of large unmeasured disturbances, especially the heat gain due to the occupants. In fact, identification of this “occupant-induced load” is also valuable for predictive control—especially in commercial buildings. We propose a method to identify both a model (of resistance-capacitance network type) and the unmeasured disturbances from measured input-output data. The method is based on the insight that the main contributor to the unmeasured disturbance, the occupant-induced load, is piecewise constant, especially in commercial buildings. This can be used to construct an augmented dynamic model so that disturbance estimation is converted to a state estimation problem. An outer-loop optimization identifies the best-fit parameter values. The effectiveness of the method is evaluated using data from a simulation model (under both open and closed-loop operations) and a real building. 
    more » « less
  3. We propose a method that simultaneously identifies a sparse transfer matrix and disturbance for a multi-zone building’s dynamics from input-output measurements. An l1 -regularized least-squares optimization problem is solved to obtain a sparse solution, so that only dominant interactions among zones are retained in the model. The disturbance is assumed to be piecewise-constant: the assumption aids identification and is motivated by the nature of occupancy that determines the disturbance. Application of our method on data from a simulation model shows promising results. 
    more » « less
  4. Improvements to ArduSub for the BlueROV2 (BROV2) Heavy, necessary for accurate simulation and autonomous controller design, were implemented and validated in this work. The simulation model was made more accurate with new data obtained from real-world testing and values from the literature. The manual control algorithm in the BROV2 firmware was replaced with one compatible with automatic control. In a Robot Operating System (ROS), a proportional–derivative (PD) controller to assist augmented reality (AR) pilots in controlling angular degrees of freedom (DOF) of the vehicle was implemented. Open-loop testing determined the yaw hydrodynamic model of the vehicle. A general mathematical method to determine PD gains as a function of the desired closed-loop performance was outlined. Testing was carried out in the updated simulation environment. Step response testing found that a modified derivative gain was necessary. Comparable real-world results were obtained using settings determined in the simulation environment. Frequency response testing of the modified yaw control law discovered that the bandwidth of the nonlinear system had a one-to-one correspondence with the desired closed-loop natural frequency of a simplified linear approximation. The control law was generalized for angular DOF and linear DOF were operated with open-loop control. A full six-DOF simulated dive demonstrated excellent tracking. 
    more » « less
  5. This paper addresses the problem of learning the optimal control policy for a nonlinear stochastic dynam- ical. This problem is subject to the ‘curse of dimension- ality’ associated with the dynamic programming method. This paper proposes a novel decoupled data-based con- trol (D2C) algorithm that addresses this problem using a decoupled, ‘open-loop - closed-loop’, approach. First, an open-loop deterministic trajectory optimization problem is solved using a black-box simulation model of the dynamical system. Then, closed-loop control is developed around this open-loop trajectory by linearization of the dynamics about this nominal trajectory. By virtue of linearization, a linear quadratic regulator based algorithm can be used for this closed-loop control. We show that the performance of D2C algorithm is approximately optimal. Moreover, simulation performance suggests a significant reduction in training time compared to other state of the art algorithms. 
    more » « less