A hybrid ion-exchange and algae photosynthesis (HAPIX) process was used for treatment of side stream centrate from an anaerobic digester treating waste activated sludge. Although the high NH4+ -N concentration of the centrate (~1180 mg/L) inhibited the algae growth in unamended controls, addition of 150 g/L of zeolite reduced the ammonia toxicity due to its ion exchange capacity. NH4+-N was reduced from 1,180 mg/L to 107 mg/L within 24 hours by ion exchange. Na+ was the major cation exchanged with NH4+. The addition of algae further reduced the NH4+-N concentration to 10.5 mg/L after 8 days of operation. Zeolite that was saturated with NH4+ can be bioregenerated by the algae growth so that the zeolite can adsorb more NH4+ in the wastewater. The mathematical model that combined ion-exchange and algal photosynthesis processes predicted the aqueous NH4 + -N concentration well. The HAPIX process is feasible to treat high NH4+-N side stream wastewater.
more »
« less
A hybrid algal photosynthesis and ion-exchange (HAPIX) process for side stream wastewater treatment: Experimental and modeling studies
A hybrid ion-exchange and algal photosynthesis (HAPIX) process was used for treatment of side stream centrate from an anaerobic digester treating waste activated sludge. Although the high NH4+-N concentration of the centrate (~1180 mg/L) inhibited algal growth in unamended controls, addition of zeolite reduced the ammonia toxicity due to its ion exchange capacity. Na+ was the major cation exchanged with NH4+. Growth of algae further reduced the NH4+-N concentrations. Different zeolite dosages (60, 150, and 250 g/L) resulted in different concentrations of NH4+-N in solution. Algae grown in lower zeolite dosage (60 g/L) had high protein contents. A mathematical model that combined ion-exchange and algal photosynthesis processes predicted the aqueous NH4+-N concentration well. The HAPIX process is feasible for treatment of high NH4+-N strength side stream wastewaters while regulating intracellular algal biomass contents by adjusting zeolite dosages.
more »
« less
- Award ID(s):
- 1730586
- PAR ID:
- 10076896
- Date Published:
- Journal Name:
- Water Environment Federation Technical Exhibition and Conference (WEFTEC 2017)
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
A hybrid algal photosynthesis and ion exchange (HAPIX) process was developed that uses natural zeolite (chabazite) and wild type algae to treat high ammonium strength wastewater. In the HAPIX process, ammonium ions are temporarily adsorbed from the liquid, which reduces the free ammonia concentration below the inhibitory level for algal growth. The slow release of adsorbed NH4+ subsequently supports the continuous growth of algae. In this study, a HAPIX reactor reduced NH4+-N concentrations in centrate from an anaerobic digester from 1,180 mg/L to below 10 mg/L without dilution. Chabazite doses of 60 g/L produced more biomass, with higher protein and starch contents, than doses of 150 g/L and 250 g/L. Approximately 67-70% of fatty acids in the biomass harvested from HAPIX reactors were unsaturated. A mathematical framework that couples a homogeneous surface diffusion model with a co-limitation algal kinetic growth model reasonably predicted the biomass production and NH4+-N concentrations in the HAPIX reactors. The HAPIX process has the potential to serve a two-fold purpose of high NH4+-N strength wastewater treatment and agricultural or commercial biopolymer production.more » « less
-
Algae-based wastewater treatment systems have the potential to reduce the energy cost of wastewater treatment processes by utilizing solar energy for biomass growth and nutrient removal. NH4+-N concentrations as high as 200- 300 mg/L are known to inhibit algae growth. Many research studies on the treatment of centrate after anaerobic digestion have been published recently. However, in these studies the centrate was diluted for the growth of algae due to the high NH4+-N concentrations, which are toxic to algae. Alternative solutions are necessary to treat high NH4+-N strength wastewater without addition of freshwater. Zeolites are natural hydrated aluminosilicate minerals that have been used to reduce ammonium inhibition on microorganisms due to their high affinity for ammonium ions. It is possible to use the ion-exchange (IX) capacity of zeolite to reduce the toxicity of ammonia to algae. Importantly, the zeolite, which becomes saturated with ammonium, can be reused as a slow release fertilizer. The objectives of this research were to evaluate the impact of zeolite dosage on the nutrient removal efficiency for high strength wastewater and develop mathematical models to predict the performance of hybrid IX and algae growth systems with varying doses of zeolite.more » « less
-
Diatom–diazotroph associations (DDAs) are one of the most important symbiotic dinitrogen (N2) fixing groups in the oligotrophic ocean. Despite their capability to fix N2, ammonium (NH4+) remains a key nitrogen (N) source for DDAs, and the effect of NH4+ on their metabolism remains elusive. Here, we developed a coarse-grained, cellular model of the DDA with NH4+ uptake and quantified how the level of extracellular NH4+ influences metabolism and nutrient exchange within the symbiosis. The model shows that, under a fixed growth rate, an increased NH4+ concentration may lower the required level of N2 fixation and photosynthesis, and decrease carbon (C) and N exchange. A low-NH4+ environment leads to more C and N in nutrient exchange and more fixed N2 to support a higher growth rate. With higher growth rates, nutrient exchange and metabolism increased. Our study shows a strong effect of NH4+ on metabolic processes within DDAs, and thus highlights the importance of in situ measurement of NH4+ concentrations.more » « less
-
It seems improbable that a thin veneer of attached algae coating submerged surfaces in lakes and rivers could be the foundation of many freshwater food webs, but increasing evidence from chemical tracers supports this view. Attached algae grow on any submerged surface that receives enough light for photosynthesis, but animals often graze attached algae down to thin, barely perceptible biofilms. Algae in general are more nutritious and digestible than terrestrial plants or detritus, and attached algae are particularly harvestable, being concentrated on surfaces. Diatoms, a major component of attached algal assemblages, are especially nutritious and tolerant of heavy grazing. Algivores can track attached algal productivity over a range of spatial scales and consume a high proportion of new attached algal growth in high-light, low-nutrient ecosystems. The subsequent efficient conversion of the algae into consumer production in freshwater food webs can lead to low-producer, high-consumer biomass, patterns that Elton (1927) described as inverted trophic pyramids. Human perturbations of nutrient, sediment, and carbon loading into freshwaters and of thermal and hydrologic regimes can weaken consumer control of algae and promote nuisance attached algal blooms.more » « less