skip to main content


Search for: All records

Award ID contains: 1730586

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. A hybrid algal photosynthesis and ion exchange (HAPIX) process was developed that uses natural zeolite (chabazite) and wild type algae to treat high ammonium strength wastewater. In the HAPIX process, ammonium ions are temporarily adsorbed from the liquid, which reduces the free ammonia concentration below the inhibitory level for algal growth. The slow release of adsorbed NH4+ subsequently supports the continuous growth of algae. In this study, a HAPIX reactor reduced NH4+-N concentrations in centrate from an anaerobic digester from 1,180 mg/L to below 10 mg/L without dilution. Chabazite doses of 60 g/L produced more biomass, with higher protein and starch contents, than doses of 150 g/L and 250 g/L. Approximately 67-70% of fatty acids in the biomass harvested from HAPIX reactors were unsaturated. A mathematical framework that couples a homogeneous surface diffusion model with a co-limitation algal kinetic growth model reasonably predicted the biomass production and NH4+-N concentrations in the HAPIX reactors. The HAPIX process has the potential to serve a two-fold purpose of high NH4+-N strength wastewater treatment and agricultural or commercial biopolymer production. 
    more » « less
  2. A hybrid ion-exchange and algal photosynthesis (HAPIX) process was used for treatment of side stream centrate from an anaerobic digester treating waste activated sludge. Although the high NH4+-N concentration of the centrate (~1180 mg/L) inhibited algal growth in unamended controls, addition of zeolite reduced the ammonia toxicity due to its ion exchange capacity. Na+ was the major cation exchanged with NH4+. Growth of algae further reduced the NH4+-N concentrations. Different zeolite dosages (60, 150, and 250 g/L) resulted in different concentrations of NH4+-N in solution. Algae grown in lower zeolite dosage (60 g/L) had high protein contents. A mathematical model that combined ion-exchange and algal photosynthesis processes predicted the aqueous NH4+-N concentration well. The HAPIX process is feasible for treatment of high NH4+-N strength side stream wastewaters while regulating intracellular algal biomass contents by adjusting zeolite dosages. 
    more » « less
  3. A hybrid ion-exchange and algae photosynthesis (HAPIX) process was used for treatment of side stream centrate from an anaerobic digester treating waste activated sludge. Although the high NH4+ -N concentration of the centrate (~1180 mg/L) inhibited the algae growth in unamended controls, addition of 150 g/L of zeolite reduced the ammonia toxicity due to its ion exchange capacity. NH4+-N was reduced from 1,180 mg/L to 107 mg/L within 24 hours by ion exchange. Na+ was the major cation exchanged with NH4+. The addition of algae further reduced the NH4+-N concentration to 10.5 mg/L after 8 days of operation. Zeolite that was saturated with NH4+ can be bioregenerated by the algae growth so that the zeolite can adsorb more NH4+ in the wastewater. The mathematical model that combined ion-exchange and algal photosynthesis processes predicted the aqueous NH4 + -N concentration well. The HAPIX process is feasible to treat high NH4+-N side stream wastewater. 
    more » « less
  4. Algae-based wastewater treatment systems have the potential to reduce the energy cost of wastewater treatment processes by utilizing solar energy for biomass growth and nutrient removal. NH4+-N concentrations as high as 200- 300 mg/L are known to inhibit algae growth. Many research studies on the treatment of centrate after anaerobic digestion have been published recently. However, in these studies the centrate was diluted for the growth of algae due to the high NH4+-N concentrations, which are toxic to algae. Alternative solutions are necessary to treat high NH4+-N strength wastewater without addition of freshwater. Zeolites are natural hydrated aluminosilicate minerals that have been used to reduce ammonium inhibition on microorganisms due to their high affinity for ammonium ions. It is possible to use the ion-exchange (IX) capacity of zeolite to reduce the toxicity of ammonia to algae. Importantly, the zeolite, which becomes saturated with ammonium, can be reused as a slow release fertilizer. The objectives of this research were to evaluate the impact of zeolite dosage on the nutrient removal efficiency for high strength wastewater and develop mathematical models to predict the performance of hybrid IX and algae growth systems with varying doses of zeolite. 
    more » « less