Telecommunication industries and spectrum regulation authorities are increasingly interested in unlocking the 12 GHz band for two-way 5G terrestrial services. The 12 GHz band has a much larger bandwidth than the current sub-6 GHz band and better propagation characteristics than the millimeter wave (mmWave) band. Thus, the 12 GHz band offers great potential for improving the coverage and capacity of terrestrial 5G networks. However, interference issues between incumbent receivers and 5G radio links present a major challenge in the 12 GHz band. If one could exploit the dynamic contexts inherent to the 12 GHz band, one could reform spectrum sharing policy to create spectrum access opportunities for 5G mobile services. This article makes three contributions. First, it presents the characteristics and challenges of the 12 GHz band. Second, we explain the characteristics and requirements for spectrum sharing at a variety of levels to resolve those issues. Lastly, we present several research opportunities to enable harmonious coexistence of incumbent licensees and 5G networks within the 12 GHz band.
more »
« less
A Spatial-Spectral Interference Model for Millimeter Wave 5G Applications
The potential of the millimeter wave (mmWave) band in meeting the ever growing demand for high data rate and capacity in emerging fifth-generation (5G) wireless networks is well-established. Since mmWave systems are expected to use highly directional antennas with very focused beams to overcome severe pathloss and shadowing in this band, the nature of signal propagation in mmWave wireless networks may differ from current networks. One factor that is influenced by such propagation characteristics is the interference behavior, which is also impacted by the simultaneous use of the unlicensed portion of the spectrum by multiple users. Therefore, considering the propagation characteristics in the mmWave band, we propose a spatial-spectral interference model for 5G mmWave applications, in the presence of Poisson field of blockages and interferers operating in licensed and unlicensed mmWave spectrum. Consequently, the average bit error rate of the network is calculated. Simulation is also carried out to verify the outcomes of the paper.
more »
« less
- Award ID(s):
- 1642865
- PAR ID:
- 10076913
- Date Published:
- Journal Name:
- 2017 IEEE 86th Vehicular Technology Conference (VTC-Fall)
- Page Range / eLocation ID:
- 1 to 5
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
A reconfigurable substrate integrated waveguide (SIW) filtenna operating in the 5G millimeter Wave (mmWave) band is presented, where varactors are integrated into the filtering-antenna structure to change the resonant frequency and coupling between the SIW resonators. The proposed structure allows for the reconfigurability of the antenna radiation frequency band in the range of 24-27 GHz, covering most of the 3GPP n258 band, with a constant bandwidth of 400 MHz and broadside radiation pattern. A prototype of the proposed mmWave filtenna is designed and fabricated, where the measurement results are in good agreement with the simulation. The proposed cost-effective and scalable filtenna is an ideal candidate for deployment in 5G wireless networks, with the ability to reduce adjacent channel interference (ACI) and enable passive spectrum coexistence with weather sensors in the 23.8 GHz band.more » « less
-
Radio channel propagation models for the millimeter wave (mmWave) spectrum are extremely important for planning future 5G wireless communication systems. Transmitted radio signals are received as clusters of multipath rays. Identifying these clusters provides better spatial and temporal characteristics of the mmWave channel. This paper deals with the clustering process and its validation across a wide range of frequencies in the mmWave spectrum below 100 GHz. By way of simulations, we show that in outdoor communication scenarios clustering of received rays is influenced by the frequency of the transmitted signal. This demonstrates the sparse characteristic of the mmWave spectrum (i.e., we obtain a lower number of rays at the receiver for the same urban scenario). We use the well-known k-means clustering algorithm to group arriving rays at the receiver. The accuracy of this partitioning is studied with both cluster validity indices (CVIs) and score fusion techniques. Finally, we analyze how the clustering solution changes with narrower-beam antennas, and we provide a comparison of the cluster characteristics for different types of antennas.more » « less
-
The allocation of the 5G mmWave spectrum in the 26 GHz range, known as 3GPP band n258, has raised wide concern among the remote sensing and weather forecast communities due to the adjacency of this band with a frequency band used by passive sensors in Earth Exploration-Satellite Service (EESS). The concern stems from the potential radio frequency interference (RFI) caused by transmissions in the n258 band into the 23.8 GHz frequency, one of the key frequencies employed by weather satellite passive sensing instruments, such as AMSUA and ATMS, to measure atmospheric water vapor using its emission spectrum. Such RFI can bias satellite observations and compromise weather forecasting. In this paper, we develop a modeling and numerical framework to evaluate the potential effect of the 5G mmWave n258 band’s commercial deployment on numerical weather forecast accuracy. We first estimate and map the spatio-temporal distribution of 5G mmWave base stations at the county-level throughout the contiguous United States (US) using a model for technology adoption prediction. Then, the interference power received by the AMSU-A radiometer is estimated for a single base station based on models for signal transmission, out-of-band radiation, and radio propagation. Then, the aggregate interference power for each satellite observation footprint is calculated. Using the contaminated microwave observations, a series of simulations using a numerical weather prediction (NWP) model are conducted to study the impact of 5G-induced contamination on weather forecasting accuracy. For example, our results show that when the interference power at the radiometer from a single base station is at a level of −175 dBW for a network of base stations with spectral efficiency of 15 bit/s/Hz/BS, the aggregate interference power has limited impact in the year 2025 but can result in an induced noise in brightness temperature (contamination) of up to 17 K in the year 2040. Furthermore, that level of RFI can significantly impact the 12-hour forecast of a severe weather event such as the Super Tuesday Tornado Outbreak with forecasting errors of up to 10 mm in precipitation or a mean absolute error of 12.5%. It is also estimated that when the level of interference power received by the radiometer from a single base station is −200 dBW, then there is no impact on forecasting errors even in 2040.more » « less
-
Efficient spectrum use represents an important objective given the rapid growth in mobile data and emergence of Beyond-5G networks. ● NOAA passive radiometer receivers operating at the same millimeter-wave (mmWave) frequency used by COSMOS and 5G at 28 GHz and have experienced interference, particularly from a nearby bridge. ● We manually create interference using programmable 28 GHz COSMOS mobile phased array antenna modules (PAAMs) for the creation of Spectrum Consumption Models (SCMs).more » « less
An official website of the United States government

