We establish the Freidlin–Wentzell Large Deviation Principle (LDP) for the Stochastic Heat Equation with multiplicative noise in one spatial dimension. That is, we introduce a small parameter ε√ to the noise, and establish an LDP for the trajectory of the solution. Such a Freidlin–Wentzell LDP gives the short-time, one-point LDP for the KPZ equation in terms of a variational problem. Analyzing this variational problem under the narrow wedge initial data, we prove a quadratic law for the near-center tail and a 52 law for the deep lower tail. These power laws confirm existing physics predictions (Kolokolov and Korshunov in Phys Rev B 75(14):140201, 2007, Phys Rev E 80(3):031107, 2009; Meerson et al. in Phys Rev Lett 116(7):070601, 2016; Le Doussal et al. in Phys Rev Lett 117(7):070403, 2016; Kamenev et al. in Phys Rev E 94(3):032108, 2016).
more »
« less
Walking droplets interacting with single and double slits
Couder & Fort ( Phys. Rev. Lett. , vol. 97, 2006, 154101) demonstrated that when a droplet walking on the surface of a vibrating bath passes through a single or a double slit, it is deflected due to the distortion of its guiding wave field. Moreover, they suggested the build-up of statistical diffraction and interference patterns similar to those arising for quantum particles. Recently, these results have been revisited (Andersen et al. , Phys. Rev. E, vol. 92 (1), 2015, 013006; Batelaan et al. , J. Phys.: Conf. Ser. , vol. 701 (1), 2016, 012007) and contested (Andersen et al. 2015; Bohr, Andersen & Lautrup, Recent Advances in Fluid Dynamics with Environmental Applications , 2016, Springer, pp. 335–349). We revisit these experiments with a refined experimental set-up that allows us to systematically characterize the dependence of the dynamical and statistical behaviour on the system parameters. The system behaviour is shown to depend strongly on the amplitude of the vibrational forcing: as this forcing increases, a transition from repeatable to unpredictable trajectories arises. In all cases considered, the system behaviour is dominated by a wall effect, specifically the tendency for a drop to walk along a path that makes a fixed angle relative to the plane of the slits. While the three dominant central peaks apparent in the histograms of the deflection angle reported by Couder & Fort (2006) are evident in some of the parameter regimes considered in our study, the Fraunhofer-like dependence of the number of peaks on the slit width is not recovered. In the double-slit geometry, the droplet is influenced by both slits by virtue of the spatial extent of its guiding wave field. The experimental behaviour is well captured by a recently developed theoretical model that allows for a robust treatment of walking droplets interacting with boundaries. Our study underscores the importance of experimental precision in obtaining reproducible data.
more »
« less
- Award ID(s):
- 1727565
- PAR ID:
- 10077140
- Date Published:
- Journal Name:
- Journal of Fluid Mechanics
- Volume:
- 835
- ISSN:
- 0022-1120
- Page Range / eLocation ID:
- 1136 to 1156
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
{"Abstract":["Wetland food webs have often been characterized as detrital-based ‘brown’ energy pyramids, whereas the relative role of autotrophic (‘green’) vs. microbial (‘brown’) energy sources falls along a continuum set by physical drivers, as well as autochthonous and allochthonous inputs (Moore et al. 2004; Evans-White & Halvorson 2017) that change with ecosystem development (Schmitz et al. 2006). In the Florida Coastal Everglades (FCE), metabolic imbalances, including the collapse of calcareous periphyton mats, begin with a loss of foundation species primary production and legacy organic matter (Gaiser et al. 2006). This process likely enhances heterotrophic microbial productivity (Schulte 2016) and the supply of detrital energy to consumers by changing bioavailable and recalcitrant carbon supplies (Baggett et al. 2013). A shift from complex periphyton communities to transient planktonic communities under elevated P exposure reduces habitat structure and animal refuges but increases ‘green’ energy supplies and edibility (Trexler et al. 2015; Naja et al. 2017). Multiple sites (n=9) within the FCE were selected to document changes in coastal food webs as a result of eutrophication and increasing hydrologic variability. The project began in 2019 and is currently ongoing.\n \n References:\n Baggett, L. P., Heck, K. L., Frankovich, T. A., Armitage, A. R., & Fourqurean, J. W. (2013). Stoichiometry, growth, and fecundity responses to nutrient enrichment by invertebrate grazers in sub-tropical turtle grass (Thalassia testudinum) meadows. Marine biology, 160, 169-180.\n Evans-White, M. A., and H. M. Halvorson. 2017. Comparing the Ecological Stoichiometry in Green and Brown Food Webs – A Review and Meta-analysis of Freshwater Food Webs. Frontiers in Microbiology 8:1184. \n Gaiser, E. E., Childers, D. L., Jones, R. D., Richards, J. H., Scinto, L. J., & Trexler, J. C. (2006). Periphyton responses to eutrophication in the Florida Everglades: cross‐system patterns of structural and compositional change. Limnology and Oceanography, 51(1part2), 617-630.\n Moore, J. C., E. L. Berlow, D. C. Coleman, P. C. Ruiter, Q. Dong, A. Hastings, N. C. Johnson, K. S. McCann, K. Melville, P. J. Morin, K. Nadelhoffer, A. D. Rosemond, D. M. Post, J. L. Sabo, K. M. Scow, M. J. Vanni, and D. H. Wall. 2004. Detritus, trophic dynamics and biodiversity: Detritus, trophic dynamics and biodiversity. Ecology Letters 7:584–600. \n Naja, M., Childers, D. L., & Gaiser, E. E. (2017). Water quality implications of hydrologic restoration alternatives in the Florida Everglades, United States. Restoration Ecology, 25, S48-S58.\n Schmitz, O. J., Kalies, E. L., & Booth, M. G. (2006). Alternative dynamic regimes and trophic control of plant succession. Ecosystems, 9, 659-672.\n Schulte, Nicholas O., "Controls on Benthic Microbial Community Structure and Assembly in a Karstic Coastal Wetland" (2016). FIU Electronic Theses and Dissertations. 2447. 10.25148/etd.FIDC000233\n Trexler, J. C., Gaiser, E. E., Kominoski, J. S., & Sanchez, J. (2015). The role of periphyton mats in consumer community structure and function in calcareous wetlands: lessons from the Everglades. Microbiology of the everglades ecosystem, 155-179."]}more » « less
-
Abstract Using electrodynamical description of the average power absorbed by a conducting film, we present an expression for the electric-field intensity enhancement (FIE) due to epsilon-near-zero (ENZ) polariton modes. We show that FIE reaches a limit in ultrathin ENZ films inverse of second power of ENZ losses. This is illustrated in an exemplary series of aluminum-doped zinc oxide nanolayers grown by atomic layer deposition. Only in a case of unrealistic lossless ENZ films, FIE follows the inverse second power of film thickness predicted by S. Campione, et al. [ Phys. Rev. B , vol. 91, no. 12, art. 121408, 2015]. We also predict that FIE could reach values of 100,000 in ultrathin polar semiconductor films. This work is important for establishing the limits of plasmonic field enhancement and the development of near zero refractive index photonics, nonlinear optics, thermal, and quantum optics in the ENZ regime.more » « less
-
The closed-form solution of the 1.5 post-Newtonian (PN) accurate binary black hole (BBH) Hamiltonian system has proven to be evasive for a long time since the introduction of the system in 1966. Solutions of the PN BBH systems with arbitrary parameters (masses, spins, eccentricity) are required for modeling the gravitational waves emitted by them. Accurate models of gravitational waves are crucial for their detection by LIGO/Virgo and LISA. Only recently, two solution methods for solving the BBH dynamics were proposed in Ref. [G. Cho and H. M. Lee, Phys. Rev. D 100, 044046 (2019)] (without using action-angle variables), and Refs. [S. Tanay et al., Phys. Rev. D 103, 064066 (2021), S. Tanay et al., Phys. Rev. D 107, 103040 (2023)] (action-angle based). This paper combines the ideas laid out in the above articles, fills the missing gaps and compiles the two solutions which are fully 1.5PN accurate. We also present a public Mathematica package bbhpntoolkit which implements these two solutions and compares them with the result of numerical integration of the evolution equations. The level of agreement between these solutions provides a numerical verification for all the five action variables constructed in Refs. [S. Tanay et al., Phys. Rev. D 103, 064066 (2021), S. Tanay et al., Phys. Rev. D 107, 103040 (2023)]. This paper hence serves as a stepping stone for pushing the action-angle-based solution to 2PN order via canonical perturbation theory.more » « less
-
Partially wetting droplets under an airflow can exhibit complex behaviours that arise from the coupling of surface tension, inertia of the external flow and contact-line dynamics. Recent experiments by Hooshanginejad et al. ( J. Fluid Mech. , vol. 901, 2020) revealed that a millimetric partially wetting water droplet under an impinging jet can oscillate in place, split or depin away from the jet, depending on the magnitude (i.e. $$5\unicode{x2013}20\ {\rm m}\ {\rm s}^{-1}$$ ) and position of the jet. To rationalise the experimental observations, we develop a two-dimensional lubrication model of the droplet that incorporates the external pressure of the impinging high-Reynolds-number jet, in addition to the capillary and hydrostatic pressures of the droplet. Distinct from the previous model by Hooshanginejad et al. ( J. Fluid Mech. , vol. 901, 2020), we simulate the motion of the contact line using precursor film and disjoining pressure, which allows us to capture a wider range of droplet behaviours, including the droplet dislodging to one side. Our simulations exhibit a comparable time-scale of droplet deformations and similar outcomes as the experimental observations. We also obtain the analytical steady-state solutions of the droplet shapes and construct the minimum criteria for splitting and depinning.more » « less
An official website of the United States government

