skip to main content


Title: Droplet dynamics under an impinging air jet
Partially wetting droplets under an airflow can exhibit complex behaviours that arise from the coupling of surface tension, inertia of the external flow and contact-line dynamics. Recent experiments by Hooshanginejad et al. ( J. Fluid Mech. , vol. 901, 2020) revealed that a millimetric partially wetting water droplet under an impinging jet can oscillate in place, split or depin away from the jet, depending on the magnitude (i.e. $5\unicode{x2013}20\ {\rm m}\ {\rm s}^{-1}$ ) and position of the jet. To rationalise the experimental observations, we develop a two-dimensional lubrication model of the droplet that incorporates the external pressure of the impinging high-Reynolds-number jet, in addition to the capillary and hydrostatic pressures of the droplet. Distinct from the previous model by Hooshanginejad et al. ( J. Fluid Mech. , vol. 901, 2020), we simulate the motion of the contact line using precursor film and disjoining pressure, which allows us to capture a wider range of droplet behaviours, including the droplet dislodging to one side. Our simulations exhibit a comparable time-scale of droplet deformations and similar outcomes as the experimental observations. We also obtain the analytical steady-state solutions of the droplet shapes and construct the minimum criteria for splitting and depinning.  more » « less
Award ID(s):
2042194
NSF-PAR ID:
10403990
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Journal of Fluid Mechanics
Volume:
943
ISSN:
0022-1120
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. An experimental study of the dynamics and droplet production in three mechanically generated plunging breaking waves is presented in this two-part paper. In the present paper (Part 2), in-line cinematic holography is used to measure the positions, diameters ($d\geq 100\ \mathrm {\mu }{\rm m}$), times and velocities of droplets generated by the three plunging breaking waves studied in Part 1 (Erininet al.,J. Fluid Mech., vol. 967, 2023, A35) as the droplets move up across a horizontal measurement plane located just above the wave crests. It is found that there are four major mechanisms for droplet production: closure of the indentation between the top surface of the plunging jet and the splash that it creates, the bursting of large bubbles that were entrapped under the plunging jet at impact, splashing and bubble bursting in the turbulent zone on the front face of the wave and the bursting of small bubbles that reach the water surface at the crest of the non-breaking wave following the breaker. The droplet diameter distributions for the entire droplet set for each breaker are fitted with power-law functions in separate small- and large-diameter regions. The droplet diameter where these power-law functions cross increases monotonically from 820 to 1480$\mathrm {\mu }{\rm m}$from the weak to the strong breaker, respectively. The droplet diameter and velocity characteristics and the number of the droplets generated by the four mechanisms are found to vary significantly and the processes that create these differences are discussed.

     
    more » « less
  2. An experimental study of the dynamics and droplet production in three mechanically generated plunging breaking waves is presented in this two-part paper. In the present paper (Part 1), the dynamics of the three breakers are studied through measurements of the evolution of their free surface profiles during 10 repeated breaking events for each wave. The waves are created from dispersively focused wave packets generated with three wave maker motions that differ primarily by small changes in their overall amplitude. Breaker profiles are measured with a cinematic laser-induced fluorescence technique covering a streamwise region of approximately one breaker wavelength and over a time of 3.4 breaker periods. The aligned profile data is used to create spatio-temporal maps of the ensemble average surface height and the standard deviation of both the local normal distance and the local arc length relative to the instantaneous mean profile. It is found that the mean and standard deviation maps contain strongly correlated localized features and indicate that the transition from laminar to turbulent flow is a highly repeatable process. Regions of high standard deviation include the splash created by the plunging jet impact and subsequent splash impacts at the front of the breaking region as well as the site where the air pocket entrained under the plunging jet at the moment of jet tip impact comes to the surface and pops. In Part 2 (Erininet al., J. Fluid Mech., vol. 967, 2023, A36), these features are used to interpret various features of the distributions of droplet number, diameter and velocity.

     
    more » « less
  3. We present high-resolution three-dimensional (3-D) direct numerical simulations of breaking waves solving for the two-phase Navier–Stokes equations. We investigate the role of the Reynolds number ( Re , wave inertia relative to viscous effects) and Bond number ( Bo , wave scale over the capillary length) on the energy, bubble and droplet statistics of strong plunging breakers. We explore the asymptotic regimes at high Re and Bo , and compare with laboratory breaking waves. Energetically, the breaking wave transitions from laminar to 3-D turbulent flow on a time scale that depends on the turbulent Re up to a limiting value $Re_\lambda \sim 100$ , consistent with the mixing transition in other canonical turbulent flows. We characterize the role of capillary effects on the impacting jet and ingested main cavity shape and subsequent fragmentation process, and extend the buoyant-energetic scaling from Deike et al. ( J. Fluid Mech. , vol. 801, 2016, pp. 91–129) to account for the cavity shape and its scale separation from the Hinze scale, $r_H$ . We confirm two regimes in the bubble size distribution, $N(r/r_H)\propto (r/r_H)^{-10/3}$ for $r>r_H$ , and $\propto (r/r_H)^{-3/2}$ for $r more » « less
  4. Well-resolved direct numerical simulations (DNS) have been performed of the flow in a smooth circular pipe of radius$R$and axial length$10{\rm \pi} R$at friction Reynolds numbers up to$Re_\tau =5200$using the pseudo-spectral code OPENPIPEFLOW. Various turbulence statistics are documented and compared with other DNS and experimental data in pipes as well as channels. Small but distinct differences between various datasets are identified. The friction factor$\lambda$overshoots by$2\,\%$and undershoots by$0.6\,\%$the Prandtl friction law at low and high$Re$ranges, respectively. In addition,$\lambda$in our results is slightly higher than in Pirozzoliet al.(J. Fluid Mech., vol. 926, 2021, A28), but matches well the experiments in Furuichiet al.(Phys. Fluids, vol. 27, issue 9, 2015, 095108). The log-law indicator function, which is nearly indistinguishable between pipe and channel up to$y^+=250$, has not yet developed a plateau farther away from the wall in the pipes even for the$Re_\tau =5200$cases. The wall shear stress fluctuations and the inner peak of the axial turbulence intensity – which grow monotonically with$Re_\tau$– are lower in the pipe than in the channel, but the difference decreases with increasing$Re_\tau$. While the wall value is slightly lower in the channel than in the pipe at the same$Re_\tau$, the inner peak of the pressure fluctuation shows negligible differences between them. The Reynolds number scaling of all these quantities agrees with both the logarithmic and defect-power laws if the coefficients are properly chosen. The one-dimensional spectrum of the axial velocity fluctuation exhibits a$k^{-1}$dependence at an intermediate distance from the wall – also seen in the channel. In summary, these high-fidelity data enable us to provide better insights into the flow physics in the pipes as well as the similarity/difference among different types of wall turbulence.

     
    more » « less
  5. null (Ed.)
    The Tso Morari terrane within the Himalayan orogeny underwent ultrahigh-pressure (UHP) metamorphism due to northward subduction under the Eurasian continent during the early Eocene. The advancement of computational petrology and availability of relevant thermodynamic databases provide the mechanism to more precisely quantify metamorphic processes. In this study, we model the eclogite’s prograde pressure-temperature (P-T) path as well as multiple fluid infiltration events during exhumation using Theriak-Domino with dataset ds62 and garnet[1] and other metabasic mineral activity-composition relations. The effect of garnet fractionation on the rock’s effective bulk composition is considered in simulating prograde garnet growth. A “fishhook” shape clockwise P-T path is obtained with a peak pressure of ~28.5 kbar at ~563 °C, followed by a peak temperature of ~613 °C at ~24.5 kbar[2]. Thermodynamic modelling using P-M(H2O) pseudosections on Tso Morari eclogites indicates three distinct phases of fluid infiltration during exhumation. Fluid infiltration Ⅰ occurs at ~610 °C and ~23.5 kbar with ~3.1 mol % fluid expulsion due to the destabilization of lawsonite. The modelling results are consistent with petrographic observations in the eclogite: we found ~6.0 vol % epidote and ~21.0 vol % amphibole and the possible pre-existence of lawsonite evidenced by its pseudomorph (as epidote and paragonite aggregates) in a garnet core and rim[3], and CNASH modelling on the epidote and its inclusion paragonite. Fluid infiltration Ⅱ occurs at ~9.2 kbar and ~608 °C with >2.6 mol % fluid infiltration at amphibolite-facies. This phase of fluid infiltration is characterized by aggressive amphibolization from the boudin core to rim. Fluid infiltration Ⅲ occurs at ~610 °C and ~8.7 kbar, caused by breakdown of phengite as predicted through modelling the symplectitic association (plagioclase, biotite, and amphibole) surrounding omphacite. In summary, this study not only illustrates the application of thermodynamic modelling in quantifying metamorphic processes, but also the need of comparison between modeling predictions and petrographic observations. [1] White et al. (2007), J Metamorph Geol 25, 511–527. [2] Pan et al. (2020), Contrib Mineral Petrol 175, 1–28. [3] St-Onge et al. (2013), J Metamorph Geol 31, 469–504. 
    more » « less