skip to main content


Title: School-embedded and district-wide instructional coaching in K-8 computer science: Implications for including students with disabilities
As school districts implement initiatives that bring computer science (CS) to academically diverse K-12 schools, they face heightened demands for supporting teachers in meeting the needs of a broad range of learners. However, limited knowledge exists about pedagogical approaches to teaching CS, especially to students with disabilities. This paper reports findings from a qualitative study of two CS instructional coaching models meant to support teachers in meeting the needs of diverse learners, including those with disabilities. One model involved a school-embedded coach and the other model involved a district-wide coach that traveled among multiple schools. Findings revealed that within both coaching models, co-planning and co-teaching played an integral role in supporting teachers in meeting the needs of students with disabilities. Instructional pedagogies that coaches promoted included scaffolded project planning, student collaboration, and immediate feedback to students. Within both coaching models, there was a focus on trust building and increasing teachers’ instructional skills. Differences between coaching models included a stronger level of familiarity between the coach and teachers in the school-embedded coaching. There were also different approaches to accountability and co-planning logistics.  more » « less
Award ID(s):
1639837
NSF-PAR ID:
10077183
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Journal of technology and teacher education
Volume:
26
Issue:
3
ISSN:
1059-7069
Page Range / eLocation ID:
471-501
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Through a mixed-methods approach that utilized teacher surveys and a focus group with computer science (CS) instructional coaches, this study examined elementary teachers’ confidence in meeting the needs of students with disabilities, the extent to which the teachers could use the Universal Design for Learning (UDL) framework in CS education, and the strategies that their CS instructional coaches used with them to help meet the needs of all learners, including those with disabilities. Findings from a Wilcoxon signed-rank test and a general linear regression of the teacher surveys revealed that teachers’ confidence in teaching CS and in meeting the needs of students with disabilities increased over the 5 month coaching study, but their understanding of UDL remained low throughout the study. A qualitative thematic analysis of open-response survey questions revealed that the teachers could identify instructional strategies that support the inclusion of students with disabilities in CS instruction. These strategies aligned with high leverage practices (HLPs) and included modeling, the use of explicit instruction, and opportunities for repeated instruction. When asked to identify UDL approaches, however, they had more difficulty. The focus group with coaches revealed that the coaches’ primary aim related broadly to equity and specifically to access to and the quality of CS instruction. However, although they introduced UDL-based strategies, they struggled to systematically incorporate UDL into coaching activities and did not explicitly label these strategies as part of the UDL framework on a consistent basis. This finding explains, to a large extent, the teachers’ limited understanding of UDL in the context of CS education. 
    more » « less
  2. Massachusetts defined K-12 Digital Literacy/Computer Science (DLCS) standards in 2016 and developed a 5-12 teacher licensure process, expecting K-4 teachers to be capable of teaching to the standards under their elementary license. An NSF CSforAll planning grant led to the establishment of an NSF 4-year ResearchPractice Partnership (RPP) of district and school administrators, teachers, university researchers, and external evaluators in 2018. The RPP focused on the 33 K-5 serving schools to engage all students in integrated CS/CT teaching and learning and to create a cadre of skilled and confident elementary classroom teachers ready to support their students in learning CS/CT concepts and practices. The pandemic exacerbated barriers and inequities across the district, which serves over 25,000 diverse students (9.7% white/nonHispanic, 83.7% high needs). Having observed a lack of awareness and expertise among many K-5 teachers for implementing CS/CT content and practices and seeing barriers to equitable CS/CT teaching and learning, the RPP designed an iterative, teacher-led, co-design of curriculum supported by equity-focused and embedded professional learning. This experience report describes how we refined our strategies for curriculum development and diffusion, professional learning, and importantly, our commitment to addressing diversity, equity, and inclusion beyond just reaching all students. The RPP broadened its focus on understanding race and equity to empower students to understand how technology affects their identities and to equip them to critically participate in the creation and use of technology 
    more » « less
  3. Educators rely on professional development to improve instruction. Research suggests that instructional coaching which utilizes specific coaching practices, such as classroom observation followed by debriefing and goal setting, and integrated strategies such as co-teaching, bring about significant change in instructional practices. The goal of this study was to gauge whether or not the use of a web-based data collection and coaching tool led to changes in focal classroom practices and whether or not improving those practices was, in turn, related to students’ academic and self-regulation gains across the prekindergarten year. To examine the implementation and impact of the coaching app, researchers conducted a cluster-randomized trial, comparing the classroom practices of teachers receiving business-as-usual coaching to those being coached with the app. Classroom observation data showed no significant differences in teachers’ practices across the school year, and student achievement did not differ between conditions. Qualitative data from coach interviews, however, revealed that coaches using the app were more likely to employ integrated coaching strategies associated with improving instruction. The lack of differences in terms of teachers’ practices and students’ assessment gains may be due to a lack of statistical power and inconsistent professional development implementation associated with ongoing disruptions due to the pandemic. Further research examining the effectiveness of educational technologies supporting professional development is needed. 
    more » « less
  4. Our NSF-funded ITEST project focuses on the collaborative design, implementation, and study of recurrent hands-on engineering activities with middle school youth in three rural communities in or near Appalachia. To achieve this aim, our team of faculty and graduate students partner with school educators and industry experts embedded in students’ local communities to collectively develop curriculum to aim at teacher-identified science standard and facilitate regular in-class interventions throughout the academic year. Leveraging local expertise is especially critical in this project because family pressures, cultural milieu, and preference for local, stable jobs play considerable roles in how Appalachian youth choose possible careers. Our partner communities have voluntarily opted to participate with us in a shared implementation-research program and as our project unfolds we are responsive to community-identified needs and preferences while maintaining the research program’s integrity. Our primary focus has been working to incorporate hands-on activities into science classrooms aimed at state science standards in recognition of the demands placed on teachers to align classroom time with state standards and associated standardized achievement tests. Our focus on serving diverse communities while being attentive to relevant research such as the preference for local, stable jobs attention to cultural relevance led us to reach out to advanced manufacturing facilities based in the target communities in order to enhance the connection students and teachers feel to local engineers. Each manufacturer has committed to designating several employees (engineers) to co-facilitate interventions six times each academic year. Launching our project has involved coordination across stakeholder groups to understand distinct values, goals, strengths and needs. In the first academic year, we are working with 9 different 6th grade science teachers across 7 schools in 3 counties. Co-facilitating in the classroom are representatives from our project team, graduate student volunteers from across the college of engineering, and volunteering engineers from our three industry partners. Developing this multi-stakeholder partnership has involved discussions and approvals across both school systems (e.g., superintendents, STEM coordinators, teachers) and our industry partners (e.g., managers, HR staff, volunteering engineers). The aim of this engagement-in-practice paper is to explore our lessons learned in navigating the day-to-day challenges of (1) developing and facilitating curriculum at the intersection of science standards, hands-on activities, cultural relevancy, and engineering thinking, (2) collaborating with volunteers from our industry partners and within our own college of engineering in order to deliver content in every science class of our 9 6th grade teachers one full school day/month, and (3) adapting to emergent needs that arise due to school and division differences (e.g., logistics of scheduling and curriculum pacing), community differences across our three counties (e.g., available resources in schools), and partner constraints. 
    more » « less
  5. null (Ed.)
    The Covid-19 pandemic has offered new challenges and opportunities for teaching and research. It has forced constraints on in-person gathering of researchers, teachers, and students, and conversely, has also opened doors to creative instructional design. This paper describes a novel approach to designing an online, synchronous teacher professional development (PD) and curriculum co-design experience. It shares our work in bringing together high school teachers and researchers in four US states. The teachers participated in a 3-week summer PD on ideas of Distributed Computing and how to teach this advanced topic to high school students using NetsBlox, an extension of the Snap! block-based programming environment. The goal of the PD was to prepare teachers to engage in collaborative co-design of a 9-week curricular module for use in classrooms and schools. Between their own training and the co-design process, teachers co-taught a group of high school students enrolled in a remote summer internship at a university in North Carolina to pilot the learned units and leverage ideas from their teaching experience for subsequent curricular co-design. Formative and summative feedback from teachers suggest that this PD model was successful in meeting desired outcomes. Our generalizable FIRST principles—Flexibility, Innovativeness, Responsiveness (and Respect), Supports, and Teamwork (collaboration)—that helped make this unique PD successful, can help guide future CS teacher PD designs. 
    more » « less