skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 5:00 PM ET until 11:00 PM ET on Friday, June 21 due to maintenance. We apologize for the inconvenience.


This content will become publicly available on December 15, 2024

Title: Functional brain connectivity predicts sleep duration in youth and adults
Abstract

Sleep is critical to a variety of cognitive functions and insufficient sleep can have negative consequences for mood and behavior across the lifespan. An important open question is how sleep duration is related to functional brain organization which may in turn impact cognition. To characterize the functional brain networks related to sleep across youth and young adulthood, we analyzed data from the publicly available Human Connectome Project (HCP) dataset, which includesn‐back task‐based and resting‐state fMRI data from adults aged 22–35 years (taskn = 896; restn = 898). We applied connectome‐based predictive modeling (CPM) to predict participants' mean sleep duration from their functional connectivity patterns. Models trained and tested using 10‐fold cross‐validation predicted self‐reported average sleep duration for the past month fromn‐back task and resting‐state connectivity patterns. We replicated this finding in data from the 2‐year follow‐up study session of the Adolescent Brain Cognitive Development (ABCD) Study, which also includesn‐back task and resting‐state fMRI for adolescents aged 11–12 years (taskn = 786; restn = 1274) as well as Fitbit data reflecting average sleep duration per night over an average duration of 23.97 days. CPMs trained and tested with 10‐fold cross‐validation again predicted sleep duration fromn‐back task and resting‐state functional connectivity patterns. Furthermore, demonstrating that predictive models are robust across independent datasets, CPMs trained on rest data from the HCP sample successfully generalized to predict sleep duration in the ABCD Study sample and vice versa. Thus, common resting‐state functional brain connectivity patterns reflect sleep duration in youth and young adults.

 
more » « less
Award ID(s):
2043740
NSF-PAR ID:
10508009
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Wiley
Date Published:
Journal Name:
Human Brain Mapping
Volume:
44
Issue:
18
ISSN:
1065-9471
Page Range / eLocation ID:
6293 to 6307
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Introduction

    Working memory is a critical cognitive ability that affects our daily functioning and relates to many cognitive processes and clinical conditions. Episodic memory is vital because it enables individuals to form and maintain their self‐identities. Our study analyzes the extent to which whole‐brain functional connectivity observed during completion of anN‐back memory task, a common measure of working memory, can predict both working memory and episodic memory.

    Methods

    We used connectome‐based predictive models (CPMs) to predict 502 Human Connectome Project (HCP) participants' in‐scanner 2‐back memory test scores and out‐of‐scanner working memory test (List Sorting) and episodic memory test (Picture Sequence and Penn Word) scores based on functional magnetic resonance imaging (fMRI) data collected both during rest andN‐back task performance. We also analyzed the functional brain connections that contributed to prediction for each of these models.

    Results

    Functional connectivity observed duringN‐back task performance predicted out‐of‐scanner List Sorting scores and to a lesser extent out‐of‐scanner Picture Sequence scores, but did not predict out‐of‐scanner Penn Word scores. Additionally, the functional connections predicting 2‐back scores overlapped to a greater degree with those predicting List Sorting scores than with those predicting Picture Sequence or Penn Word scores. Functional connections with the insula, including connections between insular and parietal regions, predicted scores across the 2‐back, List Sorting, and Picture Sequence tasks.

    Conclusions

    Our findings validate functional connectivity observed during theN‐back task as a measure of working memory, which generalizes to predict episodic memory to a lesser extent. By building on our understanding of the predictive power ofN‐back task functional connectivity, this work enhances our knowledge of relationships between working memory and episodic memory.

     
    more » « less
  2. Abstract Introduction

    Connectome‐based predictive modeling (CPM) is a recently developed machine‐learning‐based framework to predict individual differences in behavior from functional brain connectivity (FC). In these models, FC was operationalized as Pearson's correlation between brain regions’ fMRI time courses. However, Pearson's correlation is limited since it only captures linear relationships. We developed a more generalized metric of FC based on information flow. This measure represents FC by abstracting the brain as a flow network of nodes that send bits of information to each other, where bits are quantified through an information theory statistic called transfer entropy.

    Methods

    With a sample of individuals performing a sustained attention task and resting during functional magnetic resonance imaging (fMRI) (n = 25), we use the CPM framework to build machine‐learning models that predict attention from FC patterns measured with information flow. Models trained on− 1 participants’ task‐based patterns were applied to an unseen individual's resting‐state pattern to predict task performance. For further validation, we applied our model to two independent datasets that included resting‐state fMRI data and a measure of attention (Attention Network Task performance [n = 41] and stop‐signal task performance [n = 72]).

    Results

    Our model significantly predicted individual differences in attention task performance across three different datasets.

    Conclusions

    Information flow may be a useful complement to Pearson's correlation as a measure of FC because of its advantages for nonlinear analysis and network structure characterization.

     
    more » « less
  3. Abstract

    Functional brain networks are assessed differently earlier versus later in development: infants are almost universally scanned asleep, whereas adults are typically scanned awake. Observed differences between infant and adult functional networks may thus reflect differing states of consciousness rather than or in addition to developmental changes. We explore this question by comparing functional networks in functional magnetic resonance imaging (fMRI) scans of infants during natural sleep and awake movie-watching. As a reference, we also scanned adults during awake rest and movie-watching. Whole-brain functional connectivity was more similar within the same state (sleep and movie in infants; rest and movie in adults) compared with across states. Indeed, a classifier trained on patterns of functional connectivity robustly decoded infant state and even generalized to adults; interestingly, a classifier trained on adult state did not generalize as well to infants. Moreover, overall similarity between infant and adult functional connectivity was modulated by adult state (stronger for movie than rest) but not infant state (same for sleep and movie). Nevertheless, the connections that drove this similarity, particularly in the frontoparietal control network, were modulated by infant state. In sum, infant functional connectivity differs between sleep and movie states, highlighting the value of awake fMRI for studying functional networks over development.

     
    more » « less
  4. Hyperdimensional (HD) computing is a brain-inspired form of computing based on the manipulation of high-dimensional vectors. Offering robust data representation and relatively fast learning, HD computing is a promising candidate for energy-efficient classification of biological signals. This paper describes the application of HD computing-based machine learning to the classification of biological gender from resting-state and task functional magnetic resonance imaging (fMRI) from the publicly available Human Connectome Project (HCP). The developed HD algorithm derives predictive features through mean dynamic functional connectivity (dFC) analysis. Record encoding is employed to map features onto hyperdimensional space. Utilizing adaptive retraining techniques, the HD computing-based classifier achieves an average biological gender classification accuracy of 87%, as compared to 84% achieved by edge entropy measure. 
    more » « less
  5. Abstract

    Despite recent advances, there is still a major need to better understand the interactions between brain function and chronic gut inflammation and its clinical implications. Alterations in executive function have previously been identified in several chronic inflammatory conditions, including inflammatory bowel diseases. Inflammation-associated brain alterations can be captured by connectome analysis. Here, we used the resting-state fMRI data from 222 participants comprising three groups (ulcerative colitis (UC), irritable bowel syndrome (IBS), and healthy controls (HC),N = 74 each) to investigate the alterations in functional brain wiring and cortical stability in UC compared to the two control groups and identify possible correlations of these alterations with clinical parameters. Globally, UC participants showed increased functional connectivity and decreased modularity compared to IBS and HC groups. Regionally, UC showed decreased eigenvector centrality in the executive control network (UC < IBS < HC) and increased eigenvector centrality in the visual network (UC > IBS > HC). UC also showed increased connectivity in dorsal attention, somatomotor network, and visual networks, and these enhanced subnetwork connectivities were able to distinguish UC participants from HCs and IBS with high accuracy. Dynamic functional connectome analysis revealed that UC showed enhanced cortical stability in the medial prefrontal cortex (mPFC), which correlated with severe depression and anxiety-related measures. None of the observed brain changes were correlated with disease duration. Together, these findings are consistent with compromised functioning of networks involved in executive function and sensory integration in UC.

     
    more » « less