skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Functional brain connectivity predicts sleep duration in youth and adults
Abstract Sleep is critical to a variety of cognitive functions and insufficient sleep can have negative consequences for mood and behavior across the lifespan. An important open question is how sleep duration is related to functional brain organization which may in turn impact cognition. To characterize the functional brain networks related to sleep across youth and young adulthood, we analyzed data from the publicly available Human Connectome Project (HCP) dataset, which includesn‐back task‐based and resting‐state fMRI data from adults aged 22–35 years (taskn = 896; restn = 898). We applied connectome‐based predictive modeling (CPM) to predict participants' mean sleep duration from their functional connectivity patterns. Models trained and tested using 10‐fold cross‐validation predicted self‐reported average sleep duration for the past month fromn‐back task and resting‐state connectivity patterns. We replicated this finding in data from the 2‐year follow‐up study session of the Adolescent Brain Cognitive Development (ABCD) Study, which also includesn‐back task and resting‐state fMRI for adolescents aged 11–12 years (taskn = 786; restn = 1274) as well as Fitbit data reflecting average sleep duration per night over an average duration of 23.97 days. CPMs trained and tested with 10‐fold cross‐validation again predicted sleep duration fromn‐back task and resting‐state functional connectivity patterns. Furthermore, demonstrating that predictive models are robust across independent datasets, CPMs trained on rest data from the HCP sample successfully generalized to predict sleep duration in the ABCD Study sample and vice versa. Thus, common resting‐state functional brain connectivity patterns reflect sleep duration in youth and young adults.  more » « less
Award ID(s):
2043740
PAR ID:
10508009
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Wiley
Date Published:
Journal Name:
Human Brain Mapping
Volume:
44
Issue:
18
ISSN:
1065-9471
Page Range / eLocation ID:
6293 to 6307
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Hyperdimensional (HD) computing is a brain-inspired form of computing based on the manipulation of high-dimensional vectors. Offering robust data representation and relatively fast learning, HD computing is a promising candidate for energy-efficient classification of biological signals. This paper describes the application of HD computing-based machine learning to the classification of biological gender from resting-state and task functional magnetic resonance imaging (fMRI) from the publicly available Human Connectome Project (HCP). The developed HD algorithm derives predictive features through mean dynamic functional connectivity (dFC) analysis. Record encoding is employed to map features onto hyperdimensional space. Utilizing adaptive retraining techniques, the HD computing-based classifier achieves an average biological gender classification accuracy of 87%, as compared to 84% achieved by edge entropy measure. 
    more » « less
  2. Novelty and appropriateness are two fundamental components of creativity. However, the way in which novelty and appropriateness are separated at behavioral and neural levels remains poorly understood. In the present study, we aim to distinguish behavioral and neural bases of novelty and appropriateness of creative idea generation. In alignment with two established theories of creative thinking, which respectively, emphasize semantic association and executive control, behavioral results indicate that novelty relies more on associative abilities, while appropriateness relies more on executive functions. Next, employing a connectome predictive modeling (CPM) approach in resting-state fMRI data, we define two functional network-based models—dominated by interactions within the default network and by interactions within the limbic network—that respectively, predict novelty and appropriateness (i.e., cross-brain prediction). Furthermore, the generalizability and specificity of the two functional connectivity patterns are verified in additional resting-state fMRI and task fMRI. Finally, the two functional connectivity patterns, respectively mediate the relationship between semantic association/executive control and novelty/appropriateness. These findings provide global and predictive distinctions between novelty and appropriateness in creative idea generation. 
    more » « less
  3. Abstract Impaired cerebrovascular function contributes to the genesis of age‐related cognitive decline. In this study, the hypothesis is tested that impairments in neurovascular coupling (NVC) responses and brain network function predict cognitive dysfunction in older adults. Cerebromicrovascular and working memory function of healthy young (n= 21, 33.2±7.0 years) and aged (n= 30, 75.9±6.9 years) participants are assessed. To determine NVC responses and functional connectivity (FC) during a working memory (n‐back) paradigm, oxy‐ and deoxyhemoglobin concentration changes from the frontal cortex using functional near‐infrared spectroscopy are recorded. NVC responses are significantly impaired during the 2‐back task in aged participants, while the frontal networks are characterized by higher local and global connection strength, and dynamic FC (p< 0.05). Both impaired NVC and increased FC correlate with age‐related decline in accuracy during the 2‐back task. These findings suggest that task‐related brain states in older adults require stronger functional connections to compensate for the attenuated NVC responses associated with working memory load. 
    more » « less
  4. Patterns of estimated neural activity derived from resting state functional magnetic resonance imaging (rs-fMRI) have been shown to predict a wide range of cognitive and behavioral outcomes in both normative and clinical populations. Yet, without links to established cognitive processes, the functional brain states associated with the resting brain will remain unexplained, and potentially confounded, markers of individual differences. In this work we demonstrate the application of multivoxel pattern classifiers (MVPCs) to predict the valence and arousal properties of spontaneous affect processing in the task-non-engaged resting state. rs-fMRI data were acquired from subjects that were held out from a subject set that underwent image-based affect induction concurrent with fMRI to train the MVPCs. We also validated these affective predictions against a well-established, independent measure of autonomic arousal, skin conductance response. These findings suggest a new neuroimaging methodology for resting state analysis in which models, trained on cognition-specific task-based fMRI acquired from well-matched cohorts, capably predict hidden cognitive processes operating within the resting brain. 
    more » « less
  5. Resting-state functional magnetic resonance imaging (rs-fMRI) is a noninvasive technique pivotal for understanding human neural mechanisms of intricate cognitive processes. Most rs-fMRI studies compute a single static functional connectivity matrix across brain regions of interest, or dynamic functional connectivity matrices with a sliding window approach. These approaches are at risk of oversimplifying brain dynamics and lack proper consideration of the goal at hand. While deep learning has gained substantial popularity for modeling complex relational data, its application to uncovering the spatiotemporal dynamics of the brain is still limited. In this study we propose a novel interpretable deep learning framework that learns goal-specific functional connectivity matrix directly from time series and employs a specialized graph neural network for the final classification. Our model, DSAM, leverages temporal causal convolutional networks to capture the temporal dynamics in both low- and high-level feature representations, a temporal attention unit to identify important time points, a self-attention unit to construct the goal-specific connectivity matrix, and a novel variant of graph neural network to capture the spatial dynamics for downstream classification. To validate our approach, we conducted experiments on the Human Connectome Project dataset with 1075 samples to build and interpret the model for the classification of sex group, and the Adolescent Brain Cognitive Development Dataset with 8520 samples for independent testing. Compared our proposed framework with other state-of-art models, results suggested this novel approach goes beyond the assumption of a fixed connectivity matrix, and provides evidence of goal-specific brain connectivity patterns, which opens up potential to gain deeper insights into how the human brain adapts its functional connectivity specific to the task at hand. 
    more » « less