Abstract Our understanding of how natural selection and demographic processes produce and maintain biological diversity remains limited. However, developments in high-throughput genomic sequencing coupled with new analytical tools and phylogenetic methods now allow detailed analyses of evolutionary patterns in genes and genomes responding to specific demographic events, ecological changes, or other selection pressures. Here, we propose that the mosquitoes in the Culex pipiens complex, which include taxa of significant medical importance, provide an exceptional system for examining the mechanisms underlying speciation and taxonomic radiation. Furthermore, these insects may shed light on the influences that historical and contemporary admixture have on taxonomic integrity. Such studies will have specific importance for mitigating the disease and nuisance burdens caused by these mosquitoes. More broadly, they could inform predictions about future evolutionary trajectories in response to changing environments and patterns of evolution in other cosmopolitan and invasive species that have developed recent associations with humans. 
                        more » 
                        « less   
                    
                            
                            Novel ecological and climatic conditions drive rapid adaptation in invasive Florida Burmese pythons
                        
                    
    
            Abstract Invasive species provide powerful in situ experimental systems for studying evolution in response to selective pressures in novel habitats. While research has shown that phenotypic evolution can occur rapidly in nature, few examples exist of genomewide adaptation on short “ecological” timescales. Burmese pythons (Python molurus bivittatus) have become a successful and impactful invasive species in Florida over the last 30 years despite major freeze events that caused high python mortality. We sampled Florida Burmese pythons before and after a major freeze event in 2010 and found evidence for directional selection in genomic regions enriched for genes associated with thermosensation, behaviour and physiology. Several of these genes are linked to regenerative organ growth, an adaptive response that modulates organ size and function with feeding and fasting in pythons. Independent histological and functional genomic data sets provide additional layers of support for a contemporary shift in invasive Burmese python physiology. In the Florida population, a shift towards maintaining an active digestive system may be driven by the fitness benefits of maintaining higher metabolic rates and body temperature during freeze events. Our results suggest that a synergistic interaction between ecological and climatic selection pressures has driven adaptation in Florida Burmese pythons, demonstrating the often‐overlooked potential of rapid adaptation to influence the success of invasive species. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10077843
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- Molecular Ecology
- Volume:
- 27
- Issue:
- 23
- ISSN:
- 0962-1083
- Page Range / eLocation ID:
- p. 4744-4757
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Populations can adapt to novel selection pressures through dramatic frequency changes in a few genes of large effect or subtle shifts in many genes of small effect. The latter (polygenic adaptation) is expected to be the primary mode of evolution for many life-history traits but tends to be more difficult to detect than changes in genes of large effect. Atlantic cod (Gadus morhua) were subjected to intense fishing pressure over the twentieth century, leading to abundance crashes and a phenotypic shift toward earlier maturation across many populations. Here, we use spatially replicated temporal genomic data to test for a shared polygenic adaptive response to fishing using methods previously applied to evolve-and-resequence experiments. Cod populations on either side of the Atlantic show covariance in allele frequency change across the genome that are characteristic of recent polygenic adaptation. Using simulations, we demonstrate that the degree of covariance in allele frequency change observed in cod is unlikely to be explained by neutral processes or background selection. As human pressures on wild populations continue to increase, understanding and attributing modes of adaptation using methods similar to those demonstrated here will be important in identifying the capacity for adaptive responses and evolutionary rescue. This article is part of the theme issue ‘Detecting and attributing the causes of biodiversity change: needs, gaps and solutions’.more » « less
- 
            ABSTRACT Gene family expansion underlies a host of biological innovations across the tree of life. Understanding why specific gene families expand or contract requires comparative genomic investigations clarifying further how species adapt in the wild. This study investigates the gene family change dynamics within several species ofDaphnia, a group of freshwater microcrustaceans that are insightful model systems for evolutionary genetics' research. We employ comparative genomics approaches to understand the forces driving gene evolution and draw upon candidate gene families that change gene numbers acrossDaphnia. Our results suggest that genes related to stress responses and glycoproteins generally expand across taxa, and we investigate evolutionary hypotheses of adaptation that may underpin expansions. Through these analyses, we shed light on the interplay between gene expansions and selection within other ecologically relevant stress response gene families. While we show generalities in gene family turnover in genes related to stress response (i.e., DNA repair mechanisms), most gene family evolution is driven in a species‐specific manner. Additionally, while we show general trends toward positive selection within some expanding gene families, many genes are not under selection, highlighting the complexity of diversification and evolution withinDaphnia. Our research enhances the understanding of individual gene family evolution withinDaphniaand provides a case study of ecologically relevant genes prone to change.more » « less
- 
            Canonical models of intestinal regeneration emphasize the critical role of the crypt stem cell niche to generate enterocytes that migrate to villus ends. Burmese pythons possess extreme intestinal regenerative capacity yet lack crypts, thus providing opportunities to identify noncanonical but potentially conserved mechanisms that expand our understanding of regenerative capacity in vertebrates, including humans. Here, we leverage single-nucleus RNA sequencing of fasted and postprandial python small intestine to identify the signaling pathways and cell–cell interactions underlying the python’s regenerative response. We find that python intestinal regeneration entails the activation of multiple conserved mechanisms of growth and stress response, including core lipid metabolism pathways and the unfolded protein response in intestinal enterocytes. Our single-cell resolution highlights extensive heterogeneity in mesenchymal cell population signaling and intercellular communication that directs major tissue restructuring and the shift out of a dormant fasted state by activating both embryonic developmental and wound healing pathways. We also identify distinct roles of BEST4+ enterocytes in coordinating key regenerative transitions via NOTCH signaling. Python intestinal regeneration shares key signaling features and molecules with mammalian gastric bypass, indicating that conserved regenerative programs are common to both. Our findings provide different insights into cooperative and conserved regenerative programs and intercellular interactions in vertebrates independent of crypts which have been otherwise obscured in model species where temporal phases of generative growth are limited to embryonic development or recovery from injury.more » « less
- 
            ABSTRACT Despite the remarkable morphological diversity found in vertebrate genitalia, it has historically been difficult to quantify shape variation of soft tissue structures due to limitations of 3D landmarking methods. New techniques such as automatic landmarking now allow us to examine such structures in detail, and with these methods we quantify the intraspecific variation in the genitalia of Burmese pythons (Python bivittatus). Despite previous assertions that a vaginal pouch is not present in pythons, we find thatP. bivittatushave well developed vaginal pouches, that are morphologically diverse, and change shape over ontogeny. Vaginal pouches and hemipenes are isometric. Hemipenes also vary in shape ontogenetically, but we find no evidence of directional asymmetry in shape or size between adult right and left hemipenes suggesting a lack of laterality. We identify a potentially intersex neonate with hemipenes, testes, and a vaginal pouch. We discuss our results in the context of snake genital evolution and suggest other mechanisms for selection beyond the standard “lock and key” hypothesis. Future work examining genital shape variation of other snake families will provide more insight into the coevolutionary patterns shaping the genitalia diversity across snakes and vertebrates more broadly.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
