Abstract. Methane emissions from boreal and arctic wetlands, lakes, and rivers areexpected to increase in response to warming and associated permafrost thaw.However, the lack of appropriate land cover datasets for scalingfield-measured methane emissions to circumpolar scales has contributed to alarge uncertainty for our understanding of present-day and future methaneemissions. Here we present the Boreal–Arctic Wetland and Lake Dataset(BAWLD), a land cover dataset based on an expert assessment, extrapolatedusing random forest modelling from available spatial datasets of climate,topography, soils, permafrost conditions, vegetation, wetlands, and surfacewater extents and dynamics. In BAWLD, we estimate the fractional coverage offive wetland, seven lake, and three river classes within 0.5 × 0.5∘ grid cells that cover the northern boreal and tundra biomes(17 % of the global land surface). Land cover classes were defined usingcriteria that ensured distinct methane emissions among classes, as indicatedby a co-developed comprehensive dataset of methane flux observations. InBAWLD, wetlands occupied 3.2 × 106 km2 (14 % of domain)with a 95 % confidence interval between 2.8 and 3.8 × 106 km2. Bog, fen, and permafrost bog were the most abundant wetlandclasses, covering ∼ 28 % each of the total wetland area,while the highest-methane-emitting marsh and tundra wetland classes occupied5 % and 12 %, respectively. Lakes, defined to include all lentic open-waterecosystems regardless of size, covered 1.4 × 106 km2(6 % of domain). Low-methane-emitting large lakes (>10 km2) and glacial lakes jointly represented 78 % of the total lakearea, while high-emitting peatland and yedoma lakes covered 18 % and 4 %,respectively. Small (<0.1 km2) glacial, peatland, and yedomalakes combined covered 17 % of the total lake area but contributeddisproportionally to the overall spatial uncertainty in lake area with a95 % confidence interval between 0.15 and 0.38 × 106 km2. Rivers and streams were estimated to cover 0.12 × 106 km2 (0.5 % of domain), of which 8 % was associated withhigh-methane-emitting headwaters that drain organic-rich landscapes.Distinct combinations of spatially co-occurring wetland and lake classeswere identified across the BAWLD domain, allowing for the mapping of“wetscapes” that have characteristic methane emission magnitudes andsensitivities to climate change at regional scales. With BAWLD, we provide adataset which avoids double-accounting of wetland, lake, and river extentsand which includes confidence intervals for each land cover class. As such,BAWLD will be suitable for many hydrological and biogeochemical modellingand upscaling efforts for the northern boreal and arctic region, inparticular those aimed at improving assessments of current and futuremethane emissions. Data are freely available athttps://doi.org/10.18739/A2C824F9X (Olefeldt et al., 2021).
more »
« less
Land Cover Change in the Lower Yenisei River Using Dense Stacking of Landsat Imagery in Google Earth Engine
Climate warming is occurring at an unprecedented rate in the Arctic due to regional amplification, potentially accelerating land cover change. Measuring and monitoring land cover change utilizing optical remote sensing in the Arctic has been challenging due to persistent cloud and snow cover issues and the spectrally similar land cover types. Google Earth Engine (GEE) represents a powerful tool to efficiently investigate these changes using a large repository of available optical imagery. This work examines land cover change in the Lower Yenisei River region of arctic central Siberia and exemplifies the application of GEE using the random forest classification algorithm for Landsat dense stacks spanning the 32-year period from 1985 to 2017, referencing 1641 images in total. The semiautomated methodology presented here classifies the study area on a per-pixel basis utilizing the complete Landsat record available for the region by only drawing from minimally cloud- and snow-affected pixels. Climatic changes observed within the study area’s natural environments show a statistically significant steady greening (~21,000 km2 transition from tundra to taiga) and a slight decrease (~700 km2) in the abundance of large lakes, indicative of substantial permafrost degradation. The results of this work provide an effective semiautomated classification strategy for remote sensing in permafrost regions and map products that can be applied to future regional environmental modeling of the Lower Yenisei River region.
more »
« less
- Award ID(s):
- 1717770
- PAR ID:
- 10077932
- Date Published:
- Journal Name:
- Remote Sensing
- Volume:
- 10
- Issue:
- 8
- ISSN:
- 2072-4292
- Page Range / eLocation ID:
- 1226
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Climate warming is altering the persistence, timing, and distribution of permafrost and snow cover across the terrestrial northern hemisphere. These cryospheric changes have numerous consequences, not least of which are positive climate feedbacks associated with lowered albedo related to declining snow cover, and greenhouse gas emissions from permafrost thaw. Given the large land areas affected, these feedbacks have the potential to impact climate on a global scale. Understanding the magnitudes and rates of changes in permafrost and snow cover is therefore integral for process understanding and quantification of climate change. However, while permafrost and snow cover are largely controlled by climate, their distributions and climate impacts are influenced by numerous interrelated ecosystem processes that also respond to climate and are highly heterogeneous in space and time. In this perspective we highlight ongoing and emerging changes in ecosystem processes that mediate how permafrost and snow cover interact with climate. We focus on larch forests in northeastern Siberia, which are expansive, ecologically unique, and studied less than other Arctic and subarctic regions. Emerging fire regime changes coupled with high ground ice have the potential to foster rapid regional changes in vegetation and permafrost thaw, with important climate feedback implications.more » « less
-
This data set contains a classification of the North Slope, Alaska for drained lake basins (DLBs) based on Landsat-8 imagery of the years 2014-2019 and Arctic Digital Elevation Model (ArcticDEM) data. Drained lake basins (DLBs) are often the most common landforms in lowland permafrost regions in the Arctic (50% to 75% of the landscape). However, detailed assessments of DLB distribution and abundance are limited. This data set is based on a novel and scalable remote sensing-based approach to identify DLBs in lowland permafrost regions, using the North Slope of Alaska as a case study. The data set was validated against several prior sub-regional scale datasets and manually classified points. The study area covers greater than 71,000 square kilometers (km2), including a greater than 39,000 km2 area not previously covered in existing DLB data sets. Within the data set, three classes are present: DLB/ambiguous/noDLB. Areas classified as ambiguous could not be classified as DLB or noDLB with sufficient certainty. Users may decide on a case by case basis if they wish to use the conservative estimate of DLB area, therefore omitting areas classified as ambiguous, or to use all three classes.more » « less
-
This data set contains a classification of the North Slope, Alaska for drained lake basins (DLBs) based on Landsat-8 imagery of the years 2014-2019 and Arctic Digital Elevation Model (ArcticDEM) data. Drained lake basins (DLBs) are often the most common landforms in lowland permafrost regions in the Arctic (50% to 75% of the landscape). However, detailed assessments of DLB distribution and abundance are limited. This data set is based on a novel and scalable remote sensing-based approach to identify DLBs in lowland permafrost regions, using the North Slope of Alaska as a case study. The data set was validated against several prior sub-regional scale datasets and manually classified points. The study area covers greater than 71,000 square kilometers (km2), including a greater than 39,000 km2 area not previously covered in existing DLB data sets. Within the data set, three classes are present: DLB/ambiguous/noDLB. Areas classified as ambiguous could not be classified as DLB or noDLB with sufficient certainty. Users may decide on a case by case basis if they wish to use the conservative estimate of DLB area, therefore omitting areas classified as ambiguous, or to use all three classes.more » « less
-
null (Ed.)Lake formation and drainage are pervasive phenomena in permafrost regions. Drained lake basins (DLBs) are often the most common landforms in lowland permafrost regions in the Arctic (50% to 75% of the landscape). However, detailed assessments of DLB distribution and abundance are limited. In this study, we present a novel and scalable remote sensing-based approach to identifying DLBs in lowland permafrost regions, using the North Slope of Alaska as a case study. We validated this first North Slope-wide DLB data product against several previously published sub-regional scale datasets and manually classified points. The study area covered >71,000 km2, including a >39,000 km2 area not previously covered in existing DLB datasets. Our approach used Landsat-8 multispectral imagery and ArcticDEM data to derive a pixel-by-pixel statistical assessment of likelihood of DLB occurrence in sub-regions with different permafrost and periglacial landscape conditions, as well as to quantify aerial coverage of DLBs on the North Slope of Alaska. The results were consistent with previously published regional DLB datasets (up to 87% agreement) and showed high agreement with manually classified random points (64.4–95.5% for DLB and 83.2–95.4% for non-DLB areas). Validation of the remote sensing-based statistical approach on the North Slope of Alaska indicated that it may be possible to extend this methodology to conduct a comprehensive assessment of DLBs in pan-Arctic lowland permafrost regions. Better resolution of the spatial distribution of DLBs in lowland permafrost regions is important for quantitative studies on landscape diversity, wildlife habitat, permafrost, hydrology, geotechnical conditions, and high-latitude carbon cycling.more » « less
An official website of the United States government

