skip to main content


Title: The Boreal–Arctic Wetland and Lake Dataset (BAWLD)
Abstract. Methane emissions from boreal and arctic wetlands, lakes, and rivers areexpected to increase in response to warming and associated permafrost thaw.However, the lack of appropriate land cover datasets for scalingfield-measured methane emissions to circumpolar scales has contributed to alarge uncertainty for our understanding of present-day and future methaneemissions. Here we present the Boreal–Arctic Wetland and Lake Dataset(BAWLD), a land cover dataset based on an expert assessment, extrapolatedusing random forest modelling from available spatial datasets of climate,topography, soils, permafrost conditions, vegetation, wetlands, and surfacewater extents and dynamics. In BAWLD, we estimate the fractional coverage offive wetland, seven lake, and three river classes within 0.5 × 0.5∘ grid cells that cover the northern boreal and tundra biomes(17 % of the global land surface). Land cover classes were defined usingcriteria that ensured distinct methane emissions among classes, as indicatedby a co-developed comprehensive dataset of methane flux observations. InBAWLD, wetlands occupied 3.2 × 106 km2 (14 % of domain)with a 95 % confidence interval between 2.8 and 3.8 × 106 km2. Bog, fen, and permafrost bog were the most abundant wetlandclasses, covering ∼ 28 % each of the total wetland area,while the highest-methane-emitting marsh and tundra wetland classes occupied5 % and 12 %, respectively. Lakes, defined to include all lentic open-waterecosystems regardless of size, covered 1.4 × 106 km2(6 % of domain). Low-methane-emitting large lakes (>10 km2) and glacial lakes jointly represented 78 % of the total lakearea, while high-emitting peatland and yedoma lakes covered 18 % and 4 %,respectively. Small (<0.1 km2) glacial, peatland, and yedomalakes combined covered 17 % of the total lake area but contributeddisproportionally to the overall spatial uncertainty in lake area with a95 % confidence interval between 0.15 and 0.38 × 106 km2. Rivers and streams were estimated to cover 0.12  × 106 km2 (0.5 % of domain), of which 8 % was associated withhigh-methane-emitting headwaters that drain organic-rich landscapes.Distinct combinations of spatially co-occurring wetland and lake classeswere identified across the BAWLD domain, allowing for the mapping of“wetscapes” that have characteristic methane emission magnitudes andsensitivities to climate change at regional scales. With BAWLD, we provide adataset which avoids double-accounting of wetland, lake, and river extentsand which includes confidence intervals for each land cover class. As such,BAWLD will be suitable for many hydrological and biogeochemical modellingand upscaling efforts for the northern boreal and arctic region, inparticular those aimed at improving assessments of current and futuremethane emissions. Data are freely available athttps://doi.org/10.18739/A2C824F9X (Olefeldt et al., 2021).  more » « less
Award ID(s):
1928048 1636476 1936752 1903735
NSF-PAR ID:
10311706
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Date Published:
Journal Name:
Earth System Science Data
Volume:
13
Issue:
11
ISSN:
1866-3516
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract. Methane (CH4) emissions from the boreal and arcticregion are globally significant and highly sensitive to climate change.There is currently a wide range in estimates of high-latitude annualCH4 fluxes, where estimates based on land cover inventories andempirical CH4 flux data or process models (bottom-up approaches)generally are greater than atmospheric inversions (top-down approaches). Alimitation of bottom-up approaches has been the lack of harmonizationbetween inventories of site-level CH4 flux data and the land coverclasses present in high-latitude spatial datasets. Here we present acomprehensive dataset of small-scale, surface CH4 flux data from 540terrestrial sites (wetland and non-wetland) and 1247 aquatic sites (lakesand ponds), compiled from 189 studies. The Boreal–Arctic Wetland and LakeMethane Dataset (BAWLD-CH4) was constructed in parallel with acompatible land cover dataset, sharing the same land cover classes to enablerefined bottom-up assessments. BAWLD-CH4 includes information onsite-level CH4 fluxes but also on study design (measurement method,timing, and frequency) and site characteristics (vegetation, climate,hydrology, soil, and sediment types, permafrost conditions, lake size anddepth, and our determination of land cover class). The different land coverclasses had distinct CH4 fluxes, resulting from definitions that wereeither based on or co-varied with key environmental controls. Fluxes ofCH4 from terrestrial ecosystems were primarily influenced by watertable position, soil temperature, and vegetation composition, while CH4fluxes from aquatic ecosystems were primarily influenced by watertemperature, lake size, and lake genesis. Models could explain more of thebetween-site variability in CH4 fluxes for terrestrial than aquaticecosystems, likely due to both less precise assessments of lake CH4fluxes and fewer consistently reported lake site characteristics. Analysisof BAWLD-CH4 identified both land cover classes and regions within theboreal and arctic domain, where future studies should be focused, alongsidemethodological approaches. Overall, BAWLD-CH4 provides a comprehensivedataset of CH4 emissions from high-latitude ecosystems that are usefulfor identifying research opportunities, for comparison against new fielddata, and model parameterization or validation. BAWLD-CH4 can bedownloaded from https://doi.org/10.18739/A2DN3ZX1R (Kuhn et al., 2021). 
    more » « less
  2. null (Ed.)
    The sources of atmospheric methane (CH4) during the Holocene remain widely debated, including the role of high latitude wetland and peatland expansion and fen-to-bog transitions. We reconstructed CH4 emissions from northern peatlands from 13,000 before present (BP) to present using an empirical model based on observations of peat initiation (>3600 14C dates), peatland type (>250 peat cores), and contemporary CH4 emissions in order to explore the effects of changes in wetland type and peatland expansion on CH4 emissions over the end of the late glacial and the Holocene. We find that fen area increased steadily before 8000 BP as fens formed in major wetland complexes. After 8000 BP, new fen formation continued but widespread peatland succession (to bogs) and permafrost aggradation occurred. Reconstructed CH4 emissions from peatlands increased rapidly between 10,600 BP and 6900 BP due to fen formation and expansion. Emissions stabilized after 5000 BP at 42 ± 25 Tg CH4 y-1 as high-emitting fens transitioned to lower-emitting bogs and permafrost peatlands. Widespread permafrost formation in northern peatlands after 1000 BP led to drier and colder soils which decreased CH4 emissions by 20% to 34 ± 21 Tg y-1 by the present day. 
    more » « less
  3. Abstract

    Beaver engineering in the Arctic tundra induces hydrologic and geomorphic changes that are favorable to methane (CH4) production. Beaver-mediated methane emissions are driven by inundation of existing vegetation, conversion from lotic to lentic systems, accumulation of organic rich sediments, elevated water tables, anaerobic conditions, and thawing permafrost. Ground-based measurements of CH4emissions from beaver ponds in permafrost landscapes are scarce, but hyperspectral remote sensing data (AVIRIS-NG) permit mapping of ‘hotspots’ thought to represent locations of high CH4emission. We surveyed a 429.5 km2area in Northwestern Alaska using hyperspectral airborne imaging spectroscopy at ∼5 m pixel resolution (14.7 million observations) to examine spatial relationships between CH4hotspots and 118 beaver ponds. AVIRIS-NG CH4hotspots covered 0.539% (2.3 km2) of the study area, and were concentrated within 30 m of waterbodies. Comparing beaver ponds to all non-beaver waterbodies (including waterbodies >450 m from beaver-affected water), we found significantly greater CH4hotspot occurrences around beaver ponds, extending to a distance of 60 m. We found a 51% greater CH4hotspot occurrence ratio around beaver ponds relative to nearby non-beaver waterbodies. Dammed lake outlets showed no significant differences in CH4hotspot ratios compared to non-beaver lakes, likely due to little change in inundation extent. The enhancement in AVIRIS-NG CH4hotspots adjacent to beaver ponds is an example of a new disturbance regime, wrought by an ecosystem engineer, accelerating the effects of climate change in the Arctic. As beavers continue to expand into the Arctic and reshape lowland ecosystems, we expect continued wetland creation, permafrost thaw and alteration of the Arctic carbon cycle, as well as myriad physical and biological changes.

     
    more » « less
  4. Abstract

    Wetlands in Arctic drained lake basins (DLBs) have a high potential for carbon storage in vegetation and peat as well as for elevated greenhouse gas emissions. However, the evolution of vegetation and organic matter is rarely studied in DLBs, making these abundant wetlands especially uncertain elements of the permafrost carbon budget. We surveyed multiple DLB generations in northern Alaska with the goal to assess vegetation, microtopography, and organic matter in surface sediment and pond water in DLBs and to provide the first high-resolution land cover classification for a DLB system focussing on moisture-related vegetation classes for the Teshekpuk Lake region. We associated sediment properties and methane concentrations along a post-drainage succession gradient with remote sensing-derived land cover classes. Our study distinguished five eco-hydrological classes using statistical clustering of vegetation data, which corresponded to the land cover classes. We identified surface wetness and time since drainage as predictors of vegetation composition. Microtopographic complexity increased after drainage. Organic carbon and nitrogen contents in sediment, and dissolved organic carbon (DOC) and dissolved nitrogen (DN) in ponds were high throughout, indicating high organic matter availability and decomposition. We confirmed wetness as a predictor of sediment methane concentrations. Our findings suggest moderate to high methane concentrations independent of drainage age, with particularly high concentrations beneath submerged patches (up to 200μmol l−1) and in pond water (up to 22μmol l−1). In our DLB system, wet and shallow submerged patches with high methane concentrations occupied 54% of the area, and ponds with high DOC, DN and methane occupied another 11%. In conclusion, we demonstrate that DLB wetlands are highly productive regarding organic matter decomposition and methane production. Machine learning-aided land cover classification using high-resolution multispectral satellite imagery provides a useful tool for future upscaling of sediment properties and methane emission potentials from Arctic DLBs.

     
    more » « less
  5. null (Ed.)
    Abstract. Methane (CH4) emissions from natural landscapes constituteroughly half of global CH4 contributions to the atmosphere, yet largeuncertainties remain in the absolute magnitude and the seasonality ofemission quantities and drivers. Eddy covariance (EC) measurements ofCH4 flux are ideal for constraining ecosystem-scale CH4emissions due to quasi-continuous and high-temporal-resolution CH4flux measurements, coincident carbon dioxide, water, and energy fluxmeasurements, lack of ecosystem disturbance, and increased availability ofdatasets over the last decade. Here, we (1) describe the newly publisheddataset, FLUXNET-CH4 Version 1.0, the first open-source global dataset ofCH4 EC measurements (available athttps://fluxnet.org/data/fluxnet-ch4-community-product/, last access: 7 April 2021). FLUXNET-CH4includes half-hourly and daily gap-filled and non-gap-filled aggregatedCH4 fluxes and meteorological data from 79 sites globally: 42freshwater wetlands, 6 brackish and saline wetlands, 7 formerly drainedecosystems, 7 rice paddy sites, 2 lakes, and 15 uplands. Then, we (2) evaluate FLUXNET-CH4 representativeness for freshwater wetland coverageglobally because the majority of sites in FLUXNET-CH4 Version 1.0 arefreshwater wetlands which are a substantial source of total atmosphericCH4 emissions; and (3) we provide the first global estimates of theseasonal variability and seasonality predictors of freshwater wetlandCH4 fluxes. Our representativeness analysis suggests that thefreshwater wetland sites in the dataset cover global wetland bioclimaticattributes (encompassing energy, moisture, and vegetation-relatedparameters) in arctic, boreal, and temperate regions but only sparselycover humid tropical regions. Seasonality metrics of wetland CH4emissions vary considerably across latitudinal bands. In freshwater wetlands(except those between 20∘ S to 20∘ N) the spring onsetof elevated CH4 emissions starts 3 d earlier, and the CH4emission season lasts 4 d longer, for each degree Celsius increase in meanannual air temperature. On average, the spring onset of increasing CH4emissions lags behind soil warming by 1 month, with very few sites experiencingincreased CH4 emissions prior to the onset of soil warming. Incontrast, roughly half of these sites experience the spring onset of risingCH4 emissions prior to the spring increase in gross primaryproductivity (GPP). The timing of peak summer CH4 emissions does notcorrelate with the timing for either peak summer temperature or peak GPP.Our results provide seasonality parameters for CH4 modeling andhighlight seasonality metrics that cannot be predicted by temperature or GPP(i.e., seasonality of CH4 peak). FLUXNET-CH4 is a powerful new resourcefor diagnosing and understanding the role of terrestrial ecosystems andclimate drivers in the global CH4 cycle, and future additions of sitesin tropical ecosystems and site years of data collection will provide addedvalue to this database. All seasonality parameters are available athttps://doi.org/10.5281/zenodo.4672601 (Delwiche et al., 2021).Additionally, raw FLUXNET-CH4 data used to extract seasonality parameterscan be downloaded from https://fluxnet.org/data/fluxnet-ch4-community-product/ (last access: 7 April 2021), and a completelist of the 79 individual site data DOIs is provided in Table 2 of this paper. 
    more » « less