skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Siberian Ecosystems as Drivers of Cryospheric Climate Feedbacks in the Terrestrial Arctic
Climate warming is altering the persistence, timing, and distribution of permafrost and snow cover across the terrestrial northern hemisphere. These cryospheric changes have numerous consequences, not least of which are positive climate feedbacks associated with lowered albedo related to declining snow cover, and greenhouse gas emissions from permafrost thaw. Given the large land areas affected, these feedbacks have the potential to impact climate on a global scale. Understanding the magnitudes and rates of changes in permafrost and snow cover is therefore integral for process understanding and quantification of climate change. However, while permafrost and snow cover are largely controlled by climate, their distributions and climate impacts are influenced by numerous interrelated ecosystem processes that also respond to climate and are highly heterogeneous in space and time. In this perspective we highlight ongoing and emerging changes in ecosystem processes that mediate how permafrost and snow cover interact with climate. We focus on larch forests in northeastern Siberia, which are expansive, ecologically unique, and studied less than other Arctic and subarctic regions. Emerging fire regime changes coupled with high ground ice have the potential to foster rapid regional changes in vegetation and permafrost thaw, with important climate feedback implications.  more » « less
Award ID(s):
1708309 1708322 1708129
PAR ID:
10346930
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Frontiers in Climate
Volume:
3
ISSN:
2624-9553
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Tundra vegetation productivity and composition are responding rapidly to climatic changes in the Arctic. These changes can, in turn, mitigate or amplify permafrost thaw. In this Review, we synthesize remotely sensed and field-observed vegetation change across the tundra biome, and outline how these shifts could influence permafrost thaw. Permafrost ice content appears to be an important control on local vegetation changes; woody vegetation generally increases in ice-poor uplands, whereas replacement of woody vegetation by (aquatic) graminoids following abrupt permafrost thaw is more frequent in ice-rich Arctic lowlands. These locally observed vegetation changes contribute to regional satellite-observed greening trends, although the interpretation of greening and browning is complicated. Increases in vegetation cover and height generally mitigate permafrost thaw in summer, yet, increase annual soil temperatures through snow-related winter soil warming effects. Strong vegetation–soil feedbacks currently alleviate the consequences of thaw-related disturbances. However, if the increasing scale and frequency of disturbances in a warming Arctic exceeds the capacity for vegetation and permafrost recovery, changes to Arctic ecosystems could be irreversible. To better disentangle vegetation– soil– permafrost interactions, ecological field studies remain crucial, but require better integration with geophysical assessments. 
    more » « less
  2. null (Ed.)
    Abstract. Soils in Arctic and boreal ecosystems store twice as much carbon as the atmosphere, a portion of which may be released as high-latitude soils warm. Some of the uncertainty in the timing and magnitude of the permafrost–climate feedback stems from complex interactions between ecosystem properties and soil thermal dynamics. Terrestrial ecosystems fundamentally regulate the response of permafrost to climate change by influencing surface energy partitioning and the thermal properties of soil itself. Here we review how Arctic and boreal ecosystem processes influence thermal dynamics in permafrost soil and how these linkages may evolve in response to climate change. While many of the ecosystem characteristics and processes affecting soil thermal dynamics have been examined individually (e.g., vegetation, soil moisture, and soil structure), interactions among these processes are less understood. Changes in ecosystem type and vegetation characteristics will alter spatial patterns of interactions between climate and permafrost. In addition to shrub expansion, other vegetation responses to changes in climate and rapidly changing disturbance regimes will affect ecosystem surface energy partitioning in ways that are important for permafrost. Lastly, changes in vegetation and ecosystem distribution will lead to regional and global biophysical and biogeochemical climate feedbacks that may compound or offset local impacts on permafrost soils. Consequently, accurate prediction of the permafrost carbon climate feedback will require detailed understanding of changes in terrestrial ecosystem distribution and function, which depend on the net effects of multiple feedback processes operating across scales in space and time. 
    more » « less
  3. Abstract The physical and chemical changes that accompany permafrost thaw directly influence the microbial communities that mediate the decomposition of formerly frozen organic matter, leading to uncertainty in permafrost–climate feedbacks. Although changes to microbial metabolism and community structure are documented following thaw, the generality of post‐thaw assembly patterns across permafrost soils of the world remains uncertain, limiting our ability to predict biogeochemistry and microbial community responses to climate change. Based on our review of the Arctic microbiome, permafrost microbiology, and community ecology, we propose thatAssembly Theoryprovides a framework to better understand thaw‐mediated microbiome changes and the implications for community function and climate feedbacks. This framework posits that the prevalence of deterministic or stochastic processes indicates whether the community is well‐suited to thrive in changing environmental conditions. We predict that on a short timescale and following high‐disturbance thaw (e.g., thermokarst), stochasticity dominates post‐thaw microbiome assembly, suggesting that functional predictions will be aided by detailed information about the microbiome. At a longer timescale and lower‐intensity disturbance (e.g., active layer deepening), deterministic processes likely dominate, making environmental parameters sufficient for predicting function. We propose that the contribution of stochastic and deterministic processes to post‐thaw microbiome assembly depends on the characteristics of the thaw disturbance, as well as characteristics of the microbial community, such as the ecological and phylogenetic breadth of functional guilds, their functional redundancy, and biotic interactions. These propagate across space and time, potentially providing a means for predicting the microbial forcing of greenhouse gas feedbacks to global climate change. 
    more » « less
  4. Abstract Northern high-latitudes are projected to get warmer and wetter, which will affect rates of permafrost thaw and mechanisms by which thaw occurs. To better understand the impact of rain, as well as other factors such as snow depth, canopy cover, and microtopography, we instrumented a degrading permafrost plateau in south-central Alaska with high-resolution soil temperature sensors. The site contains ecosystem-protected permafrost, which persists in unfavorable climates due to favorable ecologic conditions. Our study (2020–2022) captured three of the snowiest years and three of the four wettest years since the site was first studied in 2015. Average thaw rates along an across-site transect increased nine-fold from 6 ± 5 cm yr−1(2015–2020) to 56 ± 12 cm yr−1(2020–2022). This thaw was not uniform. Hummock locations, residing on topographic high points with relatively dense canopy, experienced only 8 ± 9 cm yr−1of thaw, on average. Hollows, topographic low points with low canopy cover, and transition locations, which had canopy cover and elevation between hummocks and hollows, thawed 44 ± 6 cm yr−1and 39 ± 13 cm yr−1, respectively. Mechanisms of thaw differed between these locations. Hollows had high warm-season soil moisture, which increased thermal conductivity, and deep cold-season snow coverage, which insulated soil. Transition locations thawed primarily due to thermal energy transported through subsurface taliks during individual rain events. Most increases in depth to permafrost occurred below the ∼45 cm thickness seasonally frozen layer, and therefore, expanded existing site taliks. Results highlight the importance of canopy cover and microtopography in controlling soil thermal inputs, the ability of subsurface runoff from individual rain events to trigger warming and thaw, and the acceleration of thaw caused by consecutive wet and snowy years. As northern high-latitudes become warmer and wetter, and weather events become more extreme, the importance of these controls on soil warming and thaw is likely to increase. 
    more » « less
  5. Abstract Climate warming threatens to destabilize vast northern permafrost areas, potentially releasing large quantities of organic carbon that could further disrupt the climate. Here we synthesize paleorecords of past permafrost-carbon dynamics to contextualize future permafrost stability and carbon feedbacks. We identify key landscape differences between the last deglaciation and today that influence the response of permafrost to atmospheric warming, as well as landscape-level differences that limit subsequent carbon uptake. We show that the current magnitude of thaw has not yet exceeded that of previous deglaciations, but that permafrost carbon release has the potential to exert a strong feedback on future Arctic climate as temperatures exceed those of the Pleistocene. Better constraints on the extent of subsea permafrost and its carbon pool, and on carbon dynamics from a range of permafrost thaw processes, including blowout craters and megaslumps, are needed to help quantify the future permafrost-carbon-climate feedbacks. 
    more » « less