skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: In a PICL: The sedimentary deposits and facies of perennially ice‐covered lakes
Abstract Perennially ice‐covered lakes can have significantly different facies than open‐water lakes because sediment is transported onto the ice, where it accumulates, and sand grains preferentially melt through to be deposited on the lake floor. To characterize the facies in these lakes, sedimentary deposits from five Antarctic perennially ice‐covered lakes were described using lake‐bottom observations, underwater video and images, and sediment cores. One lake was dominated by laminated microbial mats and mud (derived from an abutting glacier), with disseminated sand and rare gravel. The other four lakes were dominated by laminated microbial mats and moderately well to moderately sorted medium to very coarse sand with sparse granules and pebbles; they contained minor interstitial or laminated mud (derived from streams and abutting glaciers). The sand was disseminated or localized in mounds and 1 m to more than 10 m long elongate ridges. Mounds were centimetres to metres in diameter; conical, elongate or round in shape; and isolated or deposited near or on top of one another. Sand layers in the mounds had normal, inverse, or no grading. Nine mixed mud and sand facies were defined for perennially ice‐covered lakes based on the relative proportion of mud to sand and the style of sand deposition. While perennially ice‐covered lake facies overlap with other ice‐influenced lakes and glaciomarine facies, they are characterized by a paucity of grains coarser than granules, a narrow range in sand grain sizes, and inverse grading in the sand mounds. These facies can be used to infer changes in ice cover through time and to identify perennially ice‐covered lakes in the rock record. Ancient perennially ice‐covered lakes are expected on Earth and Mars, and their characterization will provide new insights into past climatic conditions and habitability.  more » « less
Award ID(s):
1637708
PAR ID:
10078050
Author(s) / Creator(s):
 ;  ;  ;  ;  ;
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Sedimentology
Volume:
66
Issue:
3
ISSN:
0037-0746
Page Range / eLocation ID:
p. 917-939
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Over the past 50 years, the discovery and initial investigation of subglacial lakes in Antarctica have highlighted the paleoglaciological information that may be recorded in sediments at their beds. In December 2018, we accessed Mercer Subglacial Lake, West Antarctica, and recovered the first in situ subglacial lake-sediment record—120 mm of finely laminated mud. We combined geophysical observations, image analysis, and quantitative stratigraphy techniques to estimate long-term mean lake sedimentation rates (SRs) between 0.49 ± 0.12 mm a–1 and 2.3 ± 0.2 mm a–1, with a most likely SR of 0.68 ± 0.08 mm a–1. These estimates suggest that this lake formed between 53 and 260 a before core recovery (BCR), with a most likely age of 180 ± 20 a BCR—coincident with the stagnation of the nearby Kamb Ice Stream. Our work demonstrates that interconnected subglacial lake systems are fundamentally linked to larger-scale ice dynamics and highlights that subglacial sediment archives contain powerful, century-scale records of ice history and provide a modern process-based analogue for interpreting paleo–subglacial lake facies. 
    more » « less
  2. Abstract Gas bubbles directly influence the macromorphology of benthic microbial mats resulting in preservable biosedimentary structures. This study characterizes the morphology and distribution of microbial mats growing in gas‐supersaturated, perennially ice‐covered lakes Fryxell, Joyce, and Hoare of the McMurdo Dry Valleys of Antarctica. Photosynthetic benthic mats within the gas‐supersaturated zone trap oxygen‐rich bubbles and become buoyant, tearing off the bottom as “liftoff mats.” These liftoff mats form a succession of morphologies starting with bubble‐induced deformation of flat mats into tent, ridge, and finger liftoff mat. With progressive deformation, mats tear, forming sheet liftoff, while multiple cycles of deformation and tearing transform sheet into strip liftoff. Some mats detach from the substrate and float to the underside of the ice. The depth range of the liftoff zone has varied over time at each lake. Downslope expansion of bubble formation brings previously bubble‐free, deep‐water pinnacle mats into the liftoff zone. When the liftoff zone shallows, liftoff mats at the deeper end deflate and can become scaffolding for additional mat growth. The superposition and relative orientation of liftoff and pinnacle mats can be used to track the maximum depth of the liftoff zone and changes in gas saturation state in these lakes through time. Our results demonstrate that gas bubbles, even when they are transitory, can exert a significant impact on the morphology of microbial mats at larger scales. This provides a way to identify similar structures and gas supersaturated environments in the biosedimentary record. 
    more » « less
  3. Pliocene sediments were recovered during IODP Expedition 379 within the Resolution Drift offshore the Amundsen Sea. Site U1533 was drilled on the margin of a submarine channel extending landward to the continental margin, and Site U1532 was drilled in a more distal position on the thicker portion of the drift. We present new data collected on both sites. Facies assemblages consist of greenish gray clast-bearing mud with a biosiliceous component, interbedded with dark brownish gray laminated silty clay. Due to the close proximity of Sites U1532 and U1533 and the continuous sedimentation in the early Pliocene, individual beds of each facies can be correlated between sites. The red-green channel (a*) in shipboard reflectance spectroscopy and colorimetry data for Site U1533 covaries with the facies descriptions, Ba/Rb and Br in XRF data, ICP-MS bulk elemental ratios such as Sm/Zr, and clay mineralogy. This suggests that a more greenish color of the facies is partially attributed to a larger biogenic component in the sediment relative to the terrigenous supply, and a different provenance from the gray facies. Terrigenous particle size distributions (0-2000 mu) of Site U1533 show that the gray facies are relatively uniform silty clay, whereas greenish gray units show more variability, and a sand component. Sand-rich beds are present in both facies between the top of the greenish units and the bottom of the overlying gray units, and these have a uniform fine-sand mode. Greenish gray units are tentatively interpreted as deposition during ice retreat, with reduced terrigenous supply and higher primary productivity. Although these greenish grey facies can be interpreted as interglacial units, beds with this character do not occur evenly spaced throughout the stratigraphy. Greenish grey facies coincide with low Al/Ti ratios in XRF data for Site U1533. However, Al/Ti ratios change over evenly spaced intervals with orbital frequency and likely record a more complete record of glacial-interglacial cyclicity in sediment delivery than the irregular occurrence of greenish grey facies. This would suggest that some early Pliocene interglacials did not yield suitable conditions for the deposition of the greenish gray facies, and highlights the complex interactions between the ice sheet and the ocean embedded within these paleoarchives. PLAIN LANGUAGE SUMMARY Layers of sediment extracted via deep-sea drilling from beneath the seafloor off the Amundsen Sea, Antarctica, were stacked up over millions of years. The layers were built by pulses of sediment supplied from land ice and biogenic blooms, with distribution of material by ocean currents. The changing color and composition of the layers is an indication of the dominant imprint of ice-related processes versus ocean processes on the sediments that were raining down on the seafloor at any given time. Sedimentation related to the ice and the ocean follows different rhythms related to distribution of heat over time at different latitudes on Earth. The climate archive studied here records how the interference of these rhythms produces ice ages in Antarctica in a previous warm period about 3 to 5 million years ago with atmospheric greenhouse conditions that were like those of today. Investigations of these polar geological climate archives help provide context for the current ice mass loss observed in this same area of Antarctica and its potential sea-level effects. 
    more » « less
  4. Abstract The McMurdo Dry Valleys, Antarctica, are a polar desert populated with numerous closed‐watershed, perennially ice‐covered lakes primarily fed by glacial melt. Lake levels have varied by as much as 8 m since 1972 and are currently rising after a decade of decreasing. Precipitation falls as snow, so lake hydrology is dominated by energy available to melt glacier ice and to sublimate lake ice. To understand the energy and hydrologic controls on lake level changes and to explain the variability between neighboring lakes, only a few kilometers apart, we model the hydrology for the three largest lakes in Taylor Valley. We apply a physically based hydrological model that includes a surface energy balance model to estimate glacial melt and lake sublimation to constrain mass fluxes to and from the lakes. Results show that lake levels are very sensitive to small changes in glacier albedo, air temperature, and wind speed. We were able to balance the hydrologic budget in two watersheds using meltwater inflow and sublimation loss from the ice‐covered lake alone. A third watershed, closest to the coast, required additional inflow beyond model uncertainties. We hypothesize a shallow groundwater system within the active layer, fed by dispersed snow patches, contributes 23% of the inflow to this watershed. The lakes are out of equilibrium with the current climate. If the climate of our study period (1996–2013) persists into the future, the lakes will reach equilibrium starting in 2300, with levels 2–17 m higher, depending on the lake, relative to the 2020 level. 
    more » « less
  5. Abstract The perennial ice-covered lakes of the Antarctic McMurdo Dry Valleys harbour oligotrophic microbial communities that are separated geographically from other aquatic systems. Their microbiomes include planktonic microbes as well as lift-off mat communities that emerge from the ice. We used the ShortBRED protein family profiler to quantify the antibiotic resistance genes (ARGs) from metagenomes of lift-off mats emerging from ice and from filtered water samples of Lake Fryxell and Lake Bonney. The overall proportion of ARG hits was similar to that found in temperate-zone rural ponds with moderate human inputs. Specific ARGs showed distinct distributions for the two lakes and for mat vs planktonic sources. Metagenomic taxa distributions showed that mat phototrophs consisted mainly of cyanobacteria or Betaproteobacteria, whereas the water column phototrophs were mainly protists. An enrichment culture of the Betaproteobacterium Rhodoferax antarcticus from a Lake Fryxell mat sample showed an unusual mat-forming phenotype not previously reported for this species. Its genome showed no ARGs associated with Betaproteobacteria but had ARGs consistent with a minor Pseudomonas component. The Antarctic lake mats and water showed specific ARGs distinctive to the mat and water sources, but overall ARG levels were similar to those of temperate water bodies with moderate human inputs. 
    more » « less