In this study, we investigate in situ etching of β-Ga2O3 in a metalorganic chemical vapor deposition system using tert-butyl chloride (TBCl). We report etching of both heteroepitaxial 2¯01-oriented and homoepitaxial (010)-oriented β-Ga2O3 films over a wide range of substrate temperatures, TBCl molar flows, and reactor pressures. We infer that the likely etchant is HCl (g), formed by the pyrolysis of TBCl in the hydrodynamic boundary layer above the substrate. The temperature dependence of the etch rate reveals two distinct regimes characterized by markedly different apparent activation energies. The extracted apparent activation energies suggest that at temperatures below ∼800 °C, the etch rate is likely limited by desorption of etch products. The relative etch rates of heteroepitaxial 2¯01 and homoepitaxial (010) β-Ga2O3 were observed to scale by the ratio of the surface energies, indicating an anisotropic etch. Relatively smooth post-etch surface morphology was achieved by tuning the etching parameters for (010) homoepitaxial films.
more »
« less
An in vivo test of the biologically relevant roles of carotenoids as antioxidants in animals
- Award ID(s):
- 1701827
- PAR ID:
- 10078627
- Date Published:
- Journal Name:
- The Journal of Experimental Biology
- Volume:
- 221
- Issue:
- 15
- ISSN:
- 0022-0949
- Page Range / eLocation ID:
- jeb183665
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Aryl fluorosulfates of varying complexities have been used in amination reactions in water using a new Pd oxidative addition complex (OAC‐1) developed specifically to match the needs of the fine chemicals industry, not only in terms of functional group tolerance, but also reflecting time considerations associated with these important C−N couplings. Also especially noteworthy is that they replace both PFAS‐related triflates and nonaflates, which are today out of favor due to recent government regulations. The new complex based on the BippyPhos ligand is used at low loadings and under aqueous micellar conditions. Moreover, it is easily prepared and stable to long term storage. DFT calculations on the OAC precatalyst compare well with the X‐ray structure of the crystals with π‐complexation to the aromatic system of the ligand and also confirm the NMR data showing a mixture of conformers in solution that differ from the X‐ray structure in rotation of the phenyl andt‐butyl ligand substituents. An extensive variety of coupling partners, including pharmaceutically relevant APIs, readily participate under mild and environmentally responsible reaction conditions.more » « less
-
Abstract Representatives of the genusAnncaliiaare known as natural parasites of dipteran and coleopteran insects, amphipod crustaceans, but also humans, primarily with immunodeficiency.Anncaliia algerae‐caused fatal myositis is considered as an emergent infectious disease in humans.A. (=Nosema, Brachiola) algerae, the best studied species of the genus, demonstrates the broadest among microsporidia range of natural and experimental hosts, but it has never been propagated inDrosophila. We present ultrastructural analysis of development ofA. algeraein visceral muscles and adipocytes ofDrosophila melanogaster2 wk after per oral experimental infection. We observed typical toAnncaliiaspp. features of ultrastructure and cell pathology including spore morphology, characteristic extensions of the plasma membrane, and presence of “ridges” and appendages of tubular material at proliferative stages.Anncaliia algeraedevelopment inD. melanogasterwas particularly similar to one ofA. algeraeandA.(Brachiola) vesicularumin humans with acute myositis. GivenD. melanogasteris currently the most established genetic model, with a fully sequenced genome and easily available transgenic forms and genomic markers, a novel host–parasite system might provide new genetic tools to investigate host–pathogen interactions ofA. algerae, as well to test antimicrosporidia drugs.more » « less
An official website of the United States government

