Efforts to broaden participation in computing address how systemic school structures, educator preparation, and curriculum can provide inclusive learning spaces for all students. The emerging multiplicity of scholarship in computer science (CS) education forwards diverse voices, perspectives, and positionalities, and together, provide a rich set of evidence-based narratives that can transform K-12 policies and practices. The four projects featured in this panel bring together CS education efforts with varying methodologies focused on equity-oriented pedagogies and learning for all youth across the US. This panel will focus not only on sharing the multi-pronged efforts of the featured projects, but also onmore »
SFSU INCLUDES on SF CALL (Computing for All levels and learners)
n Fall 2016, our NSF INCLUDES pilot grant enabled us to develop a partnership and network (SF CALL K–20 ALLIANCE) to design and align a K–20 pathway to CS careers by broadening participation (1) at the K–12 level; (2) across key transitions between K–12 and college and at the college level; and (3) by coordinating cross–sector stakeholder support for K–20 STEM student success. We are targeting K–20 for Broadening Participation (BP) to provide entry and reentry pathways for careers in computing. SF CALL also supports the development of student leadership groups to create inclusive communities of practice. Further supporting the transition from college to industry, SFSU has partnered with the SF Chamber of Commerce and the South SF city government to develop industry internships for CS students. This is on-going project that touches a very wide spectrum of inclusive computing education from K-20 to teacher preparation. In this paper, we focus on our efforts to build inclusive partnerships among all stakeholders and create a network able to achieve the given goals.
- Award ID(s):
- 1649277
- Publication Date:
- NSF-PAR ID:
- 10078705
- Journal Name:
- 2018 CoNECD - The Collaborative Network for Engineering and Computing Diversity Conference
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
CSAwesome is a new approved curriculum and professional development (PD) provider for the Advanced Placement (AP) Computer Science (CS) A high school course. AP courses are taken by secondary (typically ages 14-19) students for college placement and/or credit. CSAwesome's free curriculum and teacher resources were developed in 2019 by adapting the CSA Java Review ebook on the open-source Runestone platform. The goals of CSAwesome are to broaden participation in the AP CSA course and to support new-to-CS students and teachers as they transition from the AP Computer Science Principles (CSP) course to the AP CSA course by using inclusive teachingmore »
-
To meet the rising demand for computer science (CS) courses, K-12 educators need to be prepared to teach introductory concepts and skills in courses such as Computer Science Principles (CSP), which takes a breadth-first approach to CS and includes topics beyond programming such as data, impacts of computing, and networks. Educators are now also being asked to teach more advanced concepts in courses such as the College Board's Advanced Placement Computer Science A (CSA) course, which focuses on advanced programming using Java and includes topics such as objects, inheritance, arrays, and recursion. Traditional CSA curricula have not used content ormore »
-
Student reflections and using individual development plans (IDPs) for mentoring have been an integral part of an NSF S-STEM project focusing on students pursuing baccalaureate degrees in Engineering Technology (ET). The Engineering Technology Scholars – IMProving Retention and Student Success (ETS-IMPRESS) project provides financial support and offers students several high-impact curricular and co-curricular activities to increase the success of academically talented students. This interdisciplinary project brings together the Electrical Engineering Technology, and Computer Network and System Administration programs in the College of Computing and the College of Engineering’s Mechanical Engineering Technology program, with programs in the Pavlis Honors College, anmore »
-
A persistent problem in engineering is an insufficient number of students interested in pursuing engineering as a college major and career. Middle school is a critical time where student interest, identity, and career choices begin to solidify. Student interest in engineering at the K-12 level has been shown to predict whether they pursue engineering as a college major and career. Therefore, research is needed to determine if engineering summer camp activities affect engineering interest and identity in middle school students and in this paper, we present a research study approach to achieve the stated objective. To develop engineering-specific theories ofmore »