In this paper, a new generalized 5×5 matrix spectral problem of Ablowitz‐Kaup‐Newell‐Segur type associated with the enlarged matrix Lie superalgebra is proposed, and its corresponding super soliton hierarchy is established. The super variational identities are used to furnish super Hamiltonian structures for the resulting super soliton hierarchy.
more »
« less
An integrable generalization of the D-Kaup–Newell soliton hierarchy and its bi-Hamiltonian reduced hierarchy
We present a new spectral problem, a generalization of the D-Kaup–Newell spectral problem, associated with the Lie algebra sl(2,R). Zero curvature equations furnish the soliton hierarchy. The trace identity produces the Hamiltonian structure for the hierarchy and shows its Liouville integrability. Lastly, a reduction of the spectral problem is shown to have a different soliton hierarchy with a bi-Hamiltonian structure. The major motivation of this paper is to present spectral problems that generate two soliton hierarchies with infinitely many conservation laws and high-order symmetries.
more »
« less
- Award ID(s):
- 1664561
- PAR ID:
- 10079107
- Date Published:
- Journal Name:
- Applied mathematics and computation
- Volume:
- 323
- ISSN:
- 1873-5649
- Page Range / eLocation ID:
- 220-227
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
A 3×3 matrix spectral problem is introduced and its associated AKNS integrable hierarchy with four components is generated. From this spectral problem, a kind of Riemann–Hilbert problems is formulated for a system of coupled mKdV equations in the resulting AKNS integrable hierarchy. N-soliton solutions to the coupled mKdV system are presented through a specific Riemann–Hilbert problem with an identity jump matrix.more » « less
-
For the tensor PCA (principal component analysis) problem, we propose a new hierarchy of increasingly powerful algorithms with increasing runtime. Our hierarchy is analogous to the sumof-squares (SOS) hierarchy but is instead inspired by statistical physics and related algorithms such as belief propagation and AMP (approximate message passing). Our level-ℓ algorithm can be thought of as a linearized message-passing algorithm that keeps track of ℓ-wise dependencies among the hidden variables. Specifically, our algorithms are spectral methods based on the Kikuchi Hessian, which generalizes the well-studied Bethe Hessian to the higher-order Kikuchi free energies. It is known that AMP, the flagship algorithm of statistical physics, has substantially worse performance than SOS for tensor PCA. In this work we ‘redeem’ the statistical physics approach by showing that our hierarchy gives a polynomial-time algorithm matching the performance of SOS. Our hierarchy also yields a continuum of subexponential-time algorithms, and we prove that these achieve the same (conjecturally optimal) tradeoff between runtime and statistical power as SOS. Our proofs are much simpler than prior work, and also apply to the related problem of refuting random k-XOR formulas. The results we present here apply to tensor PCA for tensors of all orders, and to k-XOR when k is even. Our methods suggest a new avenue for systematically obtaining optimal algorithms for Bayesian inference problems, and our results constitute a step toward unifying the statistical physics and sum-of-squares approaches to algorithm design.more » « less
-
Generalized matrix exponential solutions to the AKNS equation are obtained by the inverse scattering transformation (IST). The resulting solutions involve six matrices, which satisfy the coupled Sylvester equations. Several kinds of explicit solutions including soliton, complexiton, and Matveev solutions are deduced from the generalized matrix exponential solutions by choosing different kinds of the six involved matrices. Generalized matrix exponential solutions to a general integrable equation of the AKNS hierarchy are also derived. It is shown that the general equation and its matrix exponential solutions share the same linear structure.more » « less
-
A fractional extension of the integrable Toda lattice with decaying data on the line is obtained. Completeness of squared eigenfunctions of a linear discrete real tridiagonal eigenvalue problem is derived. This completeness relation allows nonlinear evolution equations expressed in terms of operators to be written in terms of underlying squared eigenfunctions and is related to a discretization of the continuous Schrödinger equation. The methods are discrete counterparts of continuous ones recently used to find fractional integrable extensions of the Korteweg–de Vries (KdV) and nonlinear Schrödinger (NLS) equations. Inverse scattering transform (IST) methods are used to linearize and find explicit soliton solutions to the integrable fractional Toda (fToda) lattice equation. The methodology can also be used to find and solve fractional extensions of a Toda lattice hierarchy.more » « less
An official website of the United States government

