ABSTRACT A number of young circumstellar discs show strikingly ordered (sub)millimetre polarization orientations along the minor axis, which is strong evidence for polarization due to scattering by ∼0.1 mm-sized grains. To test this mechanism further, we model the ALMA dust continuum and polarization data of HD 163296 using radmc-3d. We find that scattering by grains with a maximum size of 90 μm simultaneously reproduces the polarization observed at Band 7 and the unusually low spectral index (α ∼ 1.5) between Bands 7 and 6 in the optically thick inner disc as a result of more efficient scattering at the shorter wavelength. The low spectral index of ∼2.5 inferred for the optically thin gaps is reproduced by the same grains, as a result of telescope beam averaging of the gaps (with an intrinsic α ∼ 4) and their adjacent optically thick rings (where α ≲ 2). The tension between the grain sizes inferred from polarization and spectral index disappears because the low α values do not require large mm-sized grains. In addition, the polarization fraction has a unique azimuthal variation: higher along the major axis than the minor axis in the gaps, but vice versa in the rings. We find a rapidly declining polarization spectrum (with p ∝ λ−3 approximately) in the gaps, which becomes flattened or even inverted towards short wavelengths in the optically thick rings. These contrasting behaviours in the rings and gaps provide further tests for scattering-induced polarization via resolved multiwavelength observations.
more »
« less
Multiwavelength Stellar Polarimetry of the Filamentary Cloud IC5146. I. Dust Properties
We present optical and near-infrared stellar polarization observations toward the dark filamentary clouds associated with IC5146. The data allow us to investigate the dust properties (this paper) and the magnetic field structure (Paper II). A total of 2022 background stars were detected in the R c , I\prime , H, and/or K bands to {A}V≲ 25 mag. The ratio of the polarization percentage at different wavelengths provides an estimate of {λ }\max , the wavelength of the peak polarization, which is an indicator of the small-size cutoff of the grain size distribution. The grain size distribution seems to significantly change at {A}V˜ 3 mag, where both the average and dispersion of {P}{Rc}/{P}H decrease. In addition, we found {λ }\max ˜ 0.6{--}0.9 μm for {A}V> 2.5 mag, which is larger than the ˜0.55 μm in the general interstellar medium (ISM), suggesting that grain growth has already started in low-A V regions. Our data also reveal that polarization efficiency ({PE}\equiv {P}λ /{A}V) decreases with A V as a power law in the R c , I\prime , and K bands with indices of -0.71 ± 0.10, -1.23 ± 0.10, and -0.53 ± 0.09. However, H-band data show a power index change; the PE varies with A V steeply (index of -0.95 ± 0.30) when {A}V< 2.88+/- 0.67 mag, but softly (index of -0.25 ± 0.06) for greater A V values. The soft decay of PE in high-A V regions is consistent with the radiative alignment torque model, suggesting that our data trace the magnetic field to {A}V˜ 20 mag. Furthermore, the breakpoint found in the H band is similar to that for A V , where we found the {P}{Rc}/{P}H dispersion significantly decreased. Therefore, the flat PE-A V in high-A V regions implies that the power-index changes result from additional grain growth.
more »
« less
- Award ID(s):
- 1412269
- PAR ID:
- 10079132
- Date Published:
- Journal Name:
- The Astrophysical journal
- Volume:
- 849
- Issue:
- 2
- ISSN:
- 0004-637X
- Page Range / eLocation ID:
- 157
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Grain growth in disks around young stars plays a crucial role in the formation of planets. Early grain growth has been suggested in the HH 212 protostellar disk by previous polarization observations. To confirm it and to determine the grain size, we analyze high-resolution multiband observations of the disk obtained with the Atacama Large Millimeter/submillimeter Array (ALMA) in bands 9 (0.4 mm), 7 (0.9 mm), 6 (1.3 mm), and 3 (3 mm), as well as with the Very Large Array (VLA) in bandKa(9 mm), and we present new VLA data in bandsQ(7 mm),K(1.3 cm), andX(3 cm). We adopt a parameterized flared disk model to fit the continuum maps of the disk in these bands and derive the opacities, albedos, and opacity spectral indexβof the dust in the disk, taking into account the dust scattering ignored in the previous work modeling the multiband data of this source. For the VLA bands, we only include the bandQdata in our modeling to avoid free–free emission contamination. The obtained opacities, albedos, and opacity spectral indexβ(with a value of ∼1.2) suggest that the upper limit of maximum grain size in the disk should be ∼130μm, consistent with that implied in the previous polarization observations in band 7, supporting the grain growth in this disk. The values of the absorption opacities further highlight the need for a new dust composition model for Class 0/I disks.more » « less
-
Abstract We present a multiwavelength photometric and spectroscopic analysis of 13 super-Chandrasekhar-mass/2003fg-like Type Ia supernovae (SNe Ia). Nine of these objects were observed by the Carnegie Supernova Project. The 2003fg-like SNe have slowly declining light curves (Δ m 15 ( B ) < 1.3 mag), and peak absolute B -band magnitudes of −19 < M B < −21 mag. Many of the 2003fg-like SNe are located in the same part of the luminosity–width relation as normal SNe Ia. In the optical B and V bands, the 2003fg-like SNe look like normal SNe Ia, but at redder wavelengths they diverge. Unlike other luminous SNe Ia, the 2003fg-like SNe generally have only one i -band maximum, which peaks after the epoch of the B -band maximum, while their near-IR (NIR) light-curve rise times can be ≳40 days longer than those of normal SNe Ia. They are also at least 1 mag brighter in the NIR bands than normal SNe Ia, peaking above M H = −19 mag, and generally have negative Hubble residuals, which may be the cause of some systematics in dark-energy experiments. Spectroscopically, the 2003fg-like SNe exhibit peculiarities such as unburnt carbon well past maximum light, a large spread (8000–12,000 km s −1 ) in Si ii λ 6355 velocities at maximum light with no rapid early velocity decline, and no clear H -band break at +10 days. We find that SNe with a larger pseudo-equivalent width of C ii at maximum light have lower Si ii λ 6355 velocities and more slowly declining light curves. There are also multiple factors that contribute to the peak luminosity of 2003fg-like SNe. The explosion of a C–O degenerate core inside a carbon-rich envelope is consistent with these observations. Such a configuration may come from the core-degenerate scenario.more » « less
-
The polarisation of light induced by aligned interstellar dust serves as a significant tool in investigating cosmic magnetic fields and dust properties, while posing a challenge in characterising the polarisation of the cosmic microwave background and other sources. To establish dust polarisation as a reliable tool, the physics of the grain alignment process must be studied thoroughly. The magnetically enhanced radiative torque (MRAT) alignment is the only mechanism that can induce highly efficient alignment of grains with magnetic fields required by polarisation observations of the diffuse interstellar medium. Here, we aim to test the MRAT mechanism in starless cores using the multi-wavelength polarisation from optical to submillimetre. Our numerical modelling of dust polarisation using the MRAT theory demonstrates that the alignment efficiency of starlight polarisation (pext/AV) and the degree of thermal dust polarisation (pem) first decrease slowly with increasing visual extinction (AV) and then fall steeply as ∝Av-1at largeAVdue to the loss of grain alignment, which explains the phenomenon known as polarisation holes. Visual extinction at the transition from shallow to steep slope (AVloss) increases with maximum grain size. By applying physical profiles suitable for a starless core, 109 in the Pipe nebula (Pipe-109), our model successfully reproduces the existing observations of starlight polarisation in the R band (0.65 μm) and the H band (1.65 μm), as well as emission polarisation in the submillimetre (870 μm). Successful modelling of observational data requires perfect alignment of large grains, which serves as evidence for the MRAT mechanism, and an increased maximum grain size with higher elongation at higherAV. The latter reveals the first evidence for a new model of anisotropic grain growth induced by magnetic grain alignment. This paper introduces the framework for probing the fundamental physics of grain alignment and dust evolution using multi-wavelength dust polarisation (GRADE-POL), and it is the first of our GRADE-POL series.more » « less
-
Abstract Stress‐driven melt segregation may have important geochemical and geophysical effects but remains a poorly understood process. Few constraints exist on the permeability and distribution of melt in deformed partially molten rocks. Here, we characterize the 3D melt network and resulting permeability of an experimentally deformed partially molten rock containing several melt‐rich bands based on an X‐ray microtomography data set. Melt fractions range from 0.08 to 0.28 in the ∼20‐μm‐thick melt‐rich bands, and from 0.02 to 0.07 in the intervening ∼30‐μm‐thick regions. We simulated melt flow through subvolumes extracted from the reconstructed rock at five length scales ranging from the grain scale (3 μm) to the minimum length required to fully encompass two melt‐rich bands (64 μm). At grain scale, few subvolumes contain interconnected melt, and permeability is isotropic. As the length scale increases, more subvolumes contain melt that is interconnected parallel to the melt bands, but connectivity diminishes in the direction perpendicular to them. Even if melt is connected in all directions, permeability is lower perpendicular to the bands, in agreement with the elongation of melt pockets. Permeability parallel to the bands is proportional to melt fraction to the power of an exponent that increases from ∼2 to 5 with increasing length scale. The permeability in directions parallel to the bands is comparable to that for an isotropic partially molten rock. However, no flow is possible perpendicular to the bands over distances similar to the band spacing. Melt connectivity limits sample scale melt flow to the plane of the melt‐rich bands.more » « less
An official website of the United States government

