skip to main content

Title: Multiwavelength Stellar Polarimetry of the Filamentary Cloud IC5146. I. Dust Properties
We present optical and near-infrared stellar polarization observations toward the dark filamentary clouds associated with IC5146. The data allow us to investigate the dust properties (this paper) and the magnetic field structure (Paper II). A total of 2022 background stars were detected in the R c , I\prime , H, and/or K bands to {A}V≲ 25 mag. The ratio of the polarization percentage at different wavelengths provides an estimate of {λ }\max , the wavelength of the peak polarization, which is an indicator of the small-size cutoff of the grain size distribution. The grain size distribution seems to significantly change at {A}V˜ 3 mag, where both the average and dispersion of {P}{Rc}/{P}H decrease. In addition, we found {λ }\max ˜ 0.6{--}0.9 μm for {A}V> 2.5 mag, which is larger than the ˜0.55 μm in the general interstellar medium (ISM), suggesting that grain growth has already started in low-A V regions. Our data also reveal that polarization efficiency ({PE}\equiv {P}λ /{A}V) decreases with A V as a power law in the R c , I\prime , and K bands with indices of -0.71 ± 0.10, -1.23 ± 0.10, and -0.53 ± 0.09. However, H-band data show a power index change; the more » PE varies with A V steeply (index of -0.95 ± 0.30) when {A}V< 2.88+/- 0.67 mag, but softly (index of -0.25 ± 0.06) for greater A V values. The soft decay of PE in high-A V regions is consistent with the radiative alignment torque model, suggesting that our data trace the magnetic field to {A}V˜ 20 mag. Furthermore, the breakpoint found in the H band is similar to that for A V , where we found the {P}{Rc}/{P}H dispersion significantly decreased. Therefore, the flat PE-A V in high-A V regions implies that the power-index changes result from additional grain growth. « less
; ; ; ; ;
Award ID(s):
Publication Date:
Journal Name:
The Astrophysical journal
Page Range or eLocation-ID:
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT A number of young circumstellar discs show strikingly ordered (sub)millimetre polarization orientations along the minor axis, which is strong evidence for polarization due to scattering by ∼0.1 mm-sized grains. To test this mechanism further, we model the ALMA dust continuum and polarization data of HD 163296 using radmc-3d. We find that scattering by grains with a maximum size of 90  μm simultaneously reproduces the polarization observed at Band 7 and the unusually low spectral index (α ∼ 1.5) between Bands 7 and 6 in the optically thick inner disc as a result of more efficient scattering at the shorter wavelength. The low spectral index of ∼2.5 inferred for the optically thin gaps is reproduced by the same grains, as a result of telescope beam averaging of the gaps (with an intrinsic α ∼ 4) and their adjacent optically thick rings (where α ≲ 2). The tension between the grain sizes inferred from polarization and spectral index disappears because the low α values do not require large mm-sized grains. In addition, the polarization fraction has a unique azimuthal variation: higher along the major axis than the minor axis in the gaps, but vice versa in the rings. We find a rapidlymore »declining polarization spectrum (with p ∝ λ−3 approximately) in the gaps, which becomes flattened or even inverted towards short wavelengths in the optically thick rings. These contrasting behaviours in the rings and gaps provide further tests for scattering-induced polarization via resolved multiwavelength observations.« less
  2. We provide homogeneous optical ( U B V R I ) and near-infrared (NIR, J H K ) time series photometry for 254 cluster ( ω Cen, M 4) and field RR Lyrae (RRL) variables. We ended up with more than 551 000 measurements, of which only 9% are literature data. For 94 fundamental (RRab) and 51 first overtones (RRc) we provide a complete optical/NIR characterization (mean magnitudes, luminosity amplitudes, epoch of the anchor point). The NIR light curves of these variables were adopted to provide new light-curve templates for both RRc and RRab variables. The templates for the J and the H bands are newly introduced, together with the use of the pulsation period to discriminate among the different RRab templates. To overcome subtle uncertainties in the fit of secondary features of the light curves we provide two independent sets of analytical functions (Fourier and periodic Gaussian series). The new templates were validated by using 26 ω Cen and Bulge RRLs. We find that the difference between the measured mean magnitude along the light curve and the mean magnitude estimated by using the template on a single randomly extracted phase point is better than 0.01 mag ( σ =more »0.04 mag). We also validated the template on variables for which at least three phase points were available, but without information on the phase of the anchor point. We find that the accuracy of the mean magnitudes is also ∼0.01 mag ( σ = 0.04 mag). The new templates were applied to the Large Magellanic Cloud (LMC) globular cluster Reticulum and by using literature data and predicted PLZ relations we find true distance moduli μ = 18.47 ± 0.10 (rand.) ± 0.03 (syst.) mag ( J ) and 18.49 ± 0.09 ± 0.05 mag ( K ). We also used literature optical and mid-infrared data and we found a mean μ of 18.47 ± 0.02 ± 0.06 mag, suggesting that Reticulum is ∼1 kpc closer than the LMC.« less
  3. Resonant tunneling diodes (RTDs) have come full-circle in the past 10 years after their demonstration in the early 1990s as the fastest room-temperature semiconductor oscillator, displaying experimental results up to 712 GHz and fmax values exceeding 1.0 THz [1]. Now the RTD is once again the preeminent electronic oscillator above 1.0 THz and is being implemented as a coherent source [2] and a self-oscillating mixer [3], amongst other applications. This paper concerns RTD electroluminescence – an effect that has been studied very little in the past 30+ years of RTD development, and not at room temperature. We present experiments and modeling of an n-type In0.53Ga0.47As/AlAs double-barrier RTD operating as a cross-gap light emitter at ~300K. The MBE-growth stack is shown in Fig. 1(a). A 15-μm-diam-mesa device was defined by standard planar processing including a top annular ohmic contact with a 5-μm-diam pinhole in the center to couple out enough of the internal emission for accurate free-space power measurements [4]. The emission spectra have the behavior displayed in Fig. 1(b), parameterized by bias voltage (VB). The long wavelength emission edge is at  = 1684 nm - close to the In0.53Ga0.47As bandgap energy of Ug ≈ 0.75 eV at 300 K.more »The spectral peaks for VB = 2.8 and 3.0 V both occur around  = 1550 nm (h = 0.75 eV), so blue-shifted relative to the peak of the “ideal”, bulk InGaAs emission spectrum shown in Fig. 1(b) [5]. These results are consistent with the model displayed in Fig. 1(c), whereby the broad emission peak is attributed to the radiative recombination between electrons accumulated on the emitter side, and holes generated on the emitter side by interband tunneling with current density Jinter. The blue-shifted main peak is attributed to the quantum-size effect on the emitter side, which creates a radiative recombination rate RN,2 comparable to the band-edge cross-gap rate RN,1. Further support for this model is provided by the shorter wavelength and weaker emission peak shown in Fig. 1(b) around = 1148 nm. Our quantum mechanical calculations attribute this to radiative recombination RR,3 in the RTD quantum well between the electron ground-state level E1,e, and the hole level E1,h. To further test the model and estimate quantum efficiencies, we conducted optical power measurements using a large-area Ge photodiode located ≈3 mm away from the RTD pinhole, and having spectral response between 800 and 1800 nm with a peak responsivity of ≈0.85 A/W at  =1550 nm. Simultaneous I-V and L-V plots were obtained and are plotted in Fig. 2(a) with positive bias on the top contact (emitter on the bottom). The I-V curve displays a pronounced NDR region having a current peak-to-valley current ratio of 10.7 (typical for In0.53Ga0.47As RTDs). The external quantum efficiency (EQE) was calculated from EQE = e∙IP/(∙IE∙h) where IP is the photodiode dc current and IE the RTD current. The plot of EQE is shown in Fig. 2(b) where we see a very rapid rise with VB, but a maximum value (at VB= 3.0 V) of only ≈2×10-5. To extract the internal quantum efficiency (IQE), we use the expression EQE= c ∙i ∙r ≡ c∙IQE where ci, and r are the optical-coupling, electrical-injection, and radiative recombination efficiencies, respectively [6]. Our separate optical calculations yield c≈3.4×10-4 (limited primarily by the small pinhole) from which we obtain the curve of IQE plotted in Fig. 2(b) (right-hand scale). The maximum value of IQE (again at VB = 3.0 V) is 6.0%. From the implicit definition of IQE in terms of i and r given above, and the fact that the recombination efficiency in In0.53Ga0.47As is likely limited by Auger scattering, this result for IQE suggests that i might be significantly high. To estimate i, we have used the experimental total current of Fig. 2(a), the Kane two-band model of interband tunneling [7] computed in conjunction with a solution to Poisson’s equation across the entire structure, and a rate-equation model of Auger recombination on the emitter side [6] assuming a free-electron density of 2×1018 cm3. We focus on the high-bias regime above VB = 2.5 V of Fig. 2(a) where most of the interband tunneling should occur in the depletion region on the collector side [Jinter,2 in Fig. 1(c)]. And because of the high-quality of the InGaAs/AlAs heterostructure (very few traps or deep levels), most of the holes should reach the emitter side by some combination of drift, diffusion, and tunneling through the valence-band double barriers (Type-I offset) between InGaAs and AlAs. The computed interband current density Jinter is shown in Fig. 3(a) along with the total current density Jtot. At the maximum Jinter (at VB=3.0 V) of 7.4×102 A/cm2, we get i = Jinter/Jtot = 0.18, which is surprisingly high considering there is no p-type doping in the device. When combined with the Auger-limited r of 0.41 and c ≈ 3.4×10-4, we find a model value of IQE = 7.4% in good agreement with experiment. This leads to the model values for EQE plotted in Fig. 2(b) - also in good agreement with experiment. Finally, we address the high Jinter and consider a possible universal nature of the light-emission mechanism. Fig. 3(b) shows the tunneling probability T according to the Kane two-band model in the three materials, In0.53Ga0.47As, GaAs, and GaN, following our observation of a similar electroluminescence mechanism in GaN/AlN RTDs (due to strong polarization field of wurtzite structures) [8]. The expression is Tinter = (2/9)∙exp[(-2 ∙Ug 2 ∙me)/(2h∙P∙E)], where Ug is the bandgap energy, P is the valence-to-conduction-band momentum matrix element, and E is the electric field. Values for the highest calculated internal E fields for the InGaAs and GaN are also shown, indicating that Tinter in those structures approaches values of ~10-5. As shown, a GaAs RTD would require an internal field of ~6×105 V/cm, which is rarely realized in standard GaAs RTDs, perhaps explaining why there have been few if any reports of room-temperature electroluminescence in the GaAs devices. [1] E.R. Brown,et al., Appl. Phys. Lett., vol. 58, 2291, 1991. [5] S. Sze, Physics of Semiconductor Devices, 2nd Ed. 12.2.1 (Wiley, 1981). [2] M. Feiginov et al., Appl. Phys. Lett., 99, 233506, 2011. [6] L. Coldren, Diode Lasers and Photonic Integrated Circuits, (Wiley, 1995). [3] Y. Nishida et al., Nature Sci. Reports, 9, 18125, 2019. [7] E.O. Kane, J. of Appl. Phy 32, 83 (1961). [4] P. Fakhimi, et al., 2019 DRC Conference Digest. [8] T. Growden, et al., Nature Light: Science & Applications 7, 17150 (2018). [5] S. Sze, Physics of Semiconductor Devices, 2nd Ed. 12.2.1 (Wiley, 1981). [6] L. Coldren, Diode Lasers and Photonic Integrated Circuits, (Wiley, 1995). [7] E.O. Kane, J. of Appl. Phy 32, 83 (1961). [8] T. Growden, et al., Nature Light: Science & Applications 7, 17150 (2018).« less

    We report the flux and spectral variability of PG 1553 + 113 on intra-night (IDV) to short-term time-scales using BVRI data collected over 91 nights from 28 February to 8 November 2019 employing 10 optical telescopes: three in Bulgaria, two each in India and Serbia, and one each in Greece, Georgia, and Latvia. We monitored the blazar quasi-simultaneously for 16 nights in the V and R bands and 8 nights in the V, R, I bands and examined the light curves (LCs) for intra-day flux and colour variations using two powerful tests: the power-enhanced F-test and the nested ANOVA test. The source was found to be significantly (>99 per cent) variable in 4 nights out of 27 in R-band, 1 out of 16 in V-band, and 1 out of 6 nights in I-band. No temporal variations in the colours were observed on IDV time-scale. During the course of these observations the total variation in R-band was 0.89 mag observed. We also investigated the spectral energy distribution (SED) using B-, V-, R-, and I-band data. We found optical spectral indices in the range of 0.878 ± 0.029 to 1.106 ± 0.065 by fitting a power law (Fν∝ν−α) to these SEDs of PG 1553 + 113. We found that themore »source follows a bluer-when-brighter trend on IDV time-scales. We discuss possible physical causes of the observed spectral variability.

    « less
  5. We report the time-resolved spectral analysis of a bright near-infrared and moderate X-ray flare of Sgr A ⋆ . We obtained light curves in the M , K , and H bands in the mid- and near-infrared and in the 2 − 8 keV and 2 − 70 keV bands in the X-ray. The observed spectral slope in the near-infrared band is νL ν  ∝  ν 0.5 ± 0.2 ; the spectral slope observed in the X-ray band is νL ν  ∝  ν −0.7 ± 0.5 . Using a fast numerical implementation of a synchrotron sphere with a constant radius, magnetic field, and electron density (i.e., a one-zone model), we tested various synchrotron and synchrotron self-Compton scenarios. The observed near-infrared brightness and X-ray faintness, together with the observed spectral slopes, pose challenges for all models explored. We rule out a scenario in which the near-infrared emission is synchrotron emission and the X-ray emission is synchrotron self-Compton. Two realizations of the one-zone model can explain the observed flare and its temporal correlation: one-zone model in which the near-infrared and X-ray luminosity are produced by synchrotron self-Compton and a model in which the luminosity stems from a cooled synchrotron spectrum. Both models can describe the mean spectral energy distribution (SED)more »and temporal evolution similarly well. In order to describe the mean SED, both models require specific values of the maximum Lorentz factor γ max , which differ by roughly two orders of magnitude. The synchrotron self-Compton model suggests that electrons are accelerated to γ max  ∼ 500, while cooled synchrotron model requires acceleration up to γ max  ∼ 5 × 10 4 . The synchrotron self-Compton scenario requires electron densities of 10 10 cm −3 that are much larger than typical ambient densities in the accretion flow. Furthermore, it requires a variation of the particle density that is inconsistent with the average mass-flow rate inferred from polarization measurements and can therefore only be realized in an extraordinary accretion event. In contrast, assuming a source size of 1  R S , the cooled synchrotron scenario can be realized with densities and magnetic fields comparable with the ambient accretion flow. For both models, the temporal evolution is regulated through the maximum acceleration factor γ max , implying that sustained particle acceleration is required to explain at least a part of the temporal evolution of the flare.« less