ABSTRACT A number of young circumstellar discs show strikingly ordered (sub)millimetre polarization orientations along the minor axis, which is strong evidence for polarization due to scattering by ∼0.1 mm-sized grains. To test this mechanism further, we model the ALMA dust continuum and polarization data of HD 163296 using radmc-3d. We find that scattering by grains with a maximum size of 90 μm simultaneously reproduces the polarization observed at Band 7 and the unusually low spectral index (α ∼ 1.5) between Bands 7 and 6 in the optically thick inner disc as a result of more efficient scattering at the shorter wavelength. The low spectral index of ∼2.5 inferred for the optically thin gaps is reproduced by the same grains, as a result of telescope beam averaging of the gaps (with an intrinsic α ∼ 4) and their adjacent optically thick rings (where α ≲ 2). The tension between the grain sizes inferred from polarization and spectral index disappears because the low α values do not require large mm-sized grains. In addition, the polarization fraction has a unique azimuthal variation: higher along the major axis than the minor axis in the gaps, but vice versa in the rings. We find a rapidly declining polarization spectrum (with p ∝ λ−3 approximately) in the gaps, which becomes flattened or even inverted towards short wavelengths in the optically thick rings. These contrasting behaviours in the rings and gaps provide further tests for scattering-induced polarization via resolved multiwavelength observations.
more »
« less
Multiwavelength Stellar Polarimetry of the Filamentary Cloud IC5146. I. Dust Properties
We present optical and near-infrared stellar polarization observations toward the dark filamentary clouds associated with IC5146. The data allow us to investigate the dust properties (this paper) and the magnetic field structure (Paper II). A total of 2022 background stars were detected in the R c , I\prime , H, and/or K bands to {A}V≲ 25 mag. The ratio of the polarization percentage at different wavelengths provides an estimate of {λ }\max , the wavelength of the peak polarization, which is an indicator of the small-size cutoff of the grain size distribution. The grain size distribution seems to significantly change at {A}V˜ 3 mag, where both the average and dispersion of {P}{Rc}/{P}H decrease. In addition, we found {λ }\max ˜ 0.6{--}0.9 μm for {A}V> 2.5 mag, which is larger than the ˜0.55 μm in the general interstellar medium (ISM), suggesting that grain growth has already started in low-A V regions. Our data also reveal that polarization efficiency ({PE}\equiv {P}λ /{A}V) decreases with A V as a power law in the R c , I\prime , and K bands with indices of -0.71 ± 0.10, -1.23 ± 0.10, and -0.53 ± 0.09. However, H-band data show a power index change; the PE varies with A V steeply (index of -0.95 ± 0.30) when {A}V< 2.88+/- 0.67 mag, but softly (index of -0.25 ± 0.06) for greater A V values. The soft decay of PE in high-A V regions is consistent with the radiative alignment torque model, suggesting that our data trace the magnetic field to {A}V˜ 20 mag. Furthermore, the breakpoint found in the H band is similar to that for A V , where we found the {P}{Rc}/{P}H dispersion significantly decreased. Therefore, the flat PE-A V in high-A V regions implies that the power-index changes result from additional grain growth.
more »
« less
- Award ID(s):
- 1412269
- PAR ID:
- 10079132
- Date Published:
- Journal Name:
- The Astrophysical journal
- Volume:
- 849
- Issue:
- 2
- ISSN:
- 0004-637X
- Page Range / eLocation ID:
- 157
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Grain growth in disks around young stars plays a crucial role in the formation of planets. Early grain growth has been suggested in the HH 212 protostellar disk by previous polarization observations. To confirm it and to determine the grain size, we analyze high-resolution multiband observations of the disk obtained with the Atacama Large Millimeter/submillimeter Array (ALMA) in bands 9 (0.4 mm), 7 (0.9 mm), 6 (1.3 mm), and 3 (3 mm), as well as with the Very Large Array (VLA) in bandKa(9 mm), and we present new VLA data in bandsQ(7 mm),K(1.3 cm), andX(3 cm). We adopt a parameterized flared disk model to fit the continuum maps of the disk in these bands and derive the opacities, albedos, and opacity spectral indexβof the dust in the disk, taking into account the dust scattering ignored in the previous work modeling the multiband data of this source. For the VLA bands, we only include the bandQdata in our modeling to avoid free–free emission contamination. The obtained opacities, albedos, and opacity spectral indexβ(with a value of ∼1.2) suggest that the upper limit of maximum grain size in the disk should be ∼130μm, consistent with that implied in the previous polarization observations in band 7, supporting the grain growth in this disk. The values of the absorption opacities further highlight the need for a new dust composition model for Class 0/I disks.more » « less
-
Abstract We present a multiwavelength photometric and spectroscopic analysis of 13 super-Chandrasekhar-mass/2003fg-like Type Ia supernovae (SNe Ia). Nine of these objects were observed by the Carnegie Supernova Project. The 2003fg-like SNe have slowly declining light curves (Δ m 15 ( B ) < 1.3 mag), and peak absolute B -band magnitudes of −19 < M B < −21 mag. Many of the 2003fg-like SNe are located in the same part of the luminosity–width relation as normal SNe Ia. In the optical B and V bands, the 2003fg-like SNe look like normal SNe Ia, but at redder wavelengths they diverge. Unlike other luminous SNe Ia, the 2003fg-like SNe generally have only one i -band maximum, which peaks after the epoch of the B -band maximum, while their near-IR (NIR) light-curve rise times can be ≳40 days longer than those of normal SNe Ia. They are also at least 1 mag brighter in the NIR bands than normal SNe Ia, peaking above M H = −19 mag, and generally have negative Hubble residuals, which may be the cause of some systematics in dark-energy experiments. Spectroscopically, the 2003fg-like SNe exhibit peculiarities such as unburnt carbon well past maximum light, a large spread (8000–12,000 km s −1 ) in Si ii λ 6355 velocities at maximum light with no rapid early velocity decline, and no clear H -band break at +10 days. We find that SNe with a larger pseudo-equivalent width of C ii at maximum light have lower Si ii λ 6355 velocities and more slowly declining light curves. There are also multiple factors that contribute to the peak luminosity of 2003fg-like SNe. The explosion of a C–O degenerate core inside a carbon-rich envelope is consistent with these observations. Such a configuration may come from the core-degenerate scenario.more » « less
-
Abstract Stress‐driven melt segregation may have important geochemical and geophysical effects but remains a poorly understood process. Few constraints exist on the permeability and distribution of melt in deformed partially molten rocks. Here, we characterize the 3D melt network and resulting permeability of an experimentally deformed partially molten rock containing several melt‐rich bands based on an X‐ray microtomography data set. Melt fractions range from 0.08 to 0.28 in the ∼20‐μm‐thick melt‐rich bands, and from 0.02 to 0.07 in the intervening ∼30‐μm‐thick regions. We simulated melt flow through subvolumes extracted from the reconstructed rock at five length scales ranging from the grain scale (3 μm) to the minimum length required to fully encompass two melt‐rich bands (64 μm). At grain scale, few subvolumes contain interconnected melt, and permeability is isotropic. As the length scale increases, more subvolumes contain melt that is interconnected parallel to the melt bands, but connectivity diminishes in the direction perpendicular to them. Even if melt is connected in all directions, permeability is lower perpendicular to the bands, in agreement with the elongation of melt pockets. Permeability parallel to the bands is proportional to melt fraction to the power of an exponent that increases from ∼2 to 5 with increasing length scale. The permeability in directions parallel to the bands is comparable to that for an isotropic partially molten rock. However, no flow is possible perpendicular to the bands over distances similar to the band spacing. Melt connectivity limits sample scale melt flow to the plane of the melt‐rich bands.more » « less
-
ABSTRACT The size of dust grains, a, is key to the physical and chemical processes in circumstellar discs, but observational constraints of grain size remain challenging. (Sub)millimetre continuum observations often show a per cent-level polarization parallel to the disc minor axis, which is generally attributed to scattering by $${\sim}100\, \mu{\rm m}$$-sized spherical grains (with a size parameter x ≡ 2$$\pi$$a/λ < 1, where λ is the wavelength). Larger spherical grains (with x greater than unity) would produce opposite polarization direction. However, the inferred size is in tension with the opacity index β that points to larger mm/cm-sized grains. We investigate the scattering-produced polarization by large irregular grains with a range of x greater than unity with optical properties obtained from laboratory experiments. Using the radiation transfer code, RADMC-3D, we find that large irregular grains still produce polarization parallel to the disc minor axis. If the original forsterite refractive index in the optical is adopted, then all samples can produce the typically observed level of polarization. Accounting for the more commonly adopted refractive index using the DSHARP dust model, only grains with x of several (corresponding to ∼mm-sized grains) can reach the same polarization level. Our results suggest that grains in discs can have sizes in the millimetre regime, which may alleviate the tension between the grain sizes inferred from scattering and other means. Additionally, if large irregular grains are not settled to the mid-plane, their strong forward scattering can produce asymmetries between the near and far side of an inclined disc, which can be used to infer their presence.more » « less
An official website of the United States government

