skip to main content

Title: Weakly-Supervised Neural Text Classification
Deep neural networks are gaining increasing popularity for the classic text classification task, due to their strong expressive power and less requirement for feature engineering. Despite such attractiveness, neural text classification models suffer from the lack of training data in many real-world applications. Although many semisupervised and weakly-supervised text classification models exist, they cannot be easily applied to deep neural models and meanwhile support limited supervision types. In this paper, we propose a weakly-supervised method that addresses the lack of training data in neural text classification. Our method consists of two modules: (1) a pseudo-document generator that leverages seed information to generate pseudo-labeled documents for model pre-training, and (2) a self-training module that bootstraps on real unlabeled data for model refinement. Our method has the flexibility to handle different types of weak supervision and can be easily integrated into existing deep neural models for text classification. We have performed extensive experiments on three real-world datasets from different domains. The results demonstrate that our proposed method achieves inspiring performance without requiring excessive training data and outperforms baseline methods significantly.  more » « less
Award ID(s):
1741317 1704532 1618481
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Proceedings of the 27th {ACM} International Conference on Information and Knowledge Management, {CIKM} 2018
Page Range / eLocation ID:
983 to 992
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Hierarchical text classification, which aims to classify text documents into a given hierarchy, is an important task in many real-world applications. Recently, deep neural models are gaining increasing popularity for text classification due to their expressive power and minimum requirement for feature engineering. However, applying deep neural networks for hierarchical text classification remains challenging, because they heavily rely on a large amount of training data and meanwhile cannot easily determine appropriate levels of documents in the hierarchical setting. In this paper, we propose a weakly-supervised neural method for hierarchical text classification. Our method does not require a large amount of training data but requires only easy-to-provide weak supervision signals such as a few class-related documents or keywords. Our method effectively leverages such weak supervision signals to generate pseudo documents for model pre-training, and then performs self-training on real unlabeled data to iteratively refine the model. During the training process, our model features a hierarchical neural structure, which mimics the given hierarchy and is capable of determining the proper levels for documents with a blocking mechanism. Experiments on three datasets from different domains demonstrate the efficacy of our method compared with a comprehensive set of baselines. 
    more » « less
  2. Weakly supervised text classification methods typically train a deep neural classifier based on pseudo-labels. The quality of pseudo-labels is crucial to final performance but they are inevitably noisy due to their heuristic nature, so selecting the correct ones has a huge potential for performance boost. One straightforward solution is to select samples based on the softmax probability scores in the neural classifier corresponding to their pseudo-labels. However, we show through our experiments that such solutions are ineffective and unstable due to the erroneously high-confidence predictions from poorly calibrated models. Recent studies on the memorization effects of deep neural models suggest that these models first memorize training samples with clean labels and then those with noisy labels. Inspired by this observation, we propose a novel pseudo-label selection method LOPS that takes learning order of samples into consideration. We hypothesize that the learning order reflects the probability of wrong annotation in terms of ranking, and therefore, propose to select the samples that are learnt earlier. LOPS can be viewed as a strong performance-boost plug-in to most existing weakly-supervised text classification methods, as confirmed in extensive experiments on four real-world datasets. 
    more » « less
  3. We study the problem of weakly supervised text classification, which aims to classify text documents into a set of pre-defined categories with category surface names only and without any annotated training document provided. Most existing classifiers leverage textual information in each document. However, in many domains, documents are accompanied by various types of metadata (e.g., authors, venue, and year of a research paper). These metadata and their combinations may serve as strong category indicators in addition to textual contents. In this paper, we explore the potential of using metadata to help weakly supervised text classification. To be specific, we model the relationships between documents and metadata via a heterogeneous information network. To effectively capture higher-order structures in the network, we use motifs to describe metadata combinations. We propose a novel framework, named MotifClass, which (1) selects category-indicative motif instances, (2) retrieves and generates pseudo-labeled training samples based on category names and indicative motif instances, and (3) trains a text classifier using the pseudo training data. Extensive experiments on real-world datasets demonstrate the superior performance of MotifClass to existing weakly supervised text classification approaches. Further analysis shows the benefit of considering higher-order metadata information in our framework. 
    more » « less
  4. null (Ed.)
    Supervised deep learning methods have achieved state-of-the-art performance on the task of named entity recognition (NER). However, such methods suffer from high cost and low efficiency in training data annotation, leading to highly specialized NER models that cannot be easily adapted to new domains. Recently, distant supervision has been applied to replace human annotation, thanks to the fast development of domain-specific knowledge bases. However, the generated noisy labels pose significant challenges in learning effective neural models with distant supervision. We propose PATNER, a distantly supervised NER model that effectively deals with noisy distant supervision from domain-specific dictionaries. PATNER does not require human-annotated training data but only relies on unlabeled data and incomplete domain-specific dictionaries for distant supervision. It incorporates the distant labeling uncertainty into the neural model training to enhance distant supervision. We go beyond the traditional sequence labeling framework and propose a more effective fuzzy neural model using the tie-or-break tagging scheme for the NER task. Extensive experiments on three benchmark datasets in two domains demonstrate the power of PATNER. Case studies on two additional real-world datasets demonstrate that PATNER improves the distant NER performance in both entity boundary detection and entity type recognition. The results show a great promise in supporting high quality named entity recognition with domain-specific dictionaries on a wide variety of entity types. 
    more » « less
  5. null (Ed.)
    Recent advances in weakly supervised learn- ing enable training high-quality text classifiers by only providing a few user-provided seed words. Existing methods mainly use text data alone to generate pseudo-labels despite the fact that metadata information (e.g., author and timestamp) is widely available across various domains. Strong label indicators exist in the metadata and it has been long overlooked mainly due to the following challenges: (1) metadata is multi-typed, requiring systematic modeling of different types and their combinations, (2) metadata is noisy, some metadata entities (e.g., authors, venues) are more compelling label indicators than others. In this paper, we propose a novel framework, META, which goes beyond the existing paradigm and leverages metadata as an additional source of weak supervision. Specifically, we organize the text data and metadata together into a text-rich network and adopt network motifs to capture appropriate combinations of metadata. Based on seed words, we rank and filter motif instances to distill highly label-indicative ones as “seed motifs”, which provide additional weak supervision. Following a boot-strapping manner, we train the classifier and expand the seed words and seed motifs iteratively. Extensive experiments and case studies on real-world datasets demonstrate superior performance and significant advantages of leveraging metadata as weak supervision. 
    more » « less