We propose a component-based (CB) parametric model order reduction (pMOR) formulation for parameterized nonlinear elliptic partial differential equations. CB-pMOR is designed to deal with large-scale problems for which full-order solves are not affordable in a reasonable time frame or parameters' variations induce topology changes that prevent the application of monolithic pMOR techniques. We rely on the partition-of-unity method to devise global approximation spaces from local reduced spaces, and on Galerkin projection to compute the global state estimate. We propose a randomized data compression algorithm based on oversampling for the construction of the components' reduced spaces: the approach exploits random boundary conditions of controlled smoothness on the oversampling boundary. We further propose an adaptive residual-based enrichment algorithm that exploits global reduced-order solves on representative systems to update the local reduced spaces. We prove exponential convergence of the enrichment procedure for linear coercive problems; we further present numerical results for a two-dimensional nonlinear diffusion problem to illustrate the many features of our methodology and demonstrate its effectiveness.
more »
« less
Natural Boundary Conditions for Smoothing in Geometry Processing
We propose using a different smoothness energy, the Hessian energy, whose natural boundary conditions avoid this bias.In geometry processing, smoothness energies are commonly used to model scattered data interpolation, dense data denoising, and regularization during shape optimization. The squared Laplacian energy is a popular choice of energy and has a corresponding standard implementation: squaring the discrete Laplacian matrix. For compact domains, when values along the boundary are not known in advance, this construction bakes in low-order boundary conditions. This causes the geometric shape of the boundary to strongly bias the solution. For many applications, this is undesirable.Instead, we propose using the squared Frobenius norm of the Hessian as a smoothness energy. Unlike the squared Laplacian energy, this energy’s natural boundary conditions(those that best minimize the energy) correspond to meaningful high-order boundary conditions. These boundary conditions model free boundaries where the shape of the boundary should not bias the solution locally. Our analysis begins in the smooth setting and concludes with discretizations using finite-differences on 2D grids or mixed fnite elements for triangle meshes. We demonstrate the core behavior of the squared Hessian as a smoothness energy for various tasks.
more »
« less
- PAR ID:
- 10079219
- Date Published:
- Journal Name:
- ACM transactions on graphics
- Volume:
- 9
- Issue:
- 4
- ISSN:
- 0730-0301
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We study the regularity of the solution to an obstacle problem for a class of integro–differential operators. The differential part is a second order elliptic operator, whereas the nonlocal part is given by the integral fractional Laplacian. The obtained smoothness is then used to design and analyze a finite element scheme.more » « less
-
null (Ed.)In distributed second order optimization, a standard strategy is to average many local estimates, each of which is based on a small sketch or batch of the data. However, the local estimates on each machine are typically biased, relative to the full solution on all of the data, and this can limit the effectiveness of averaging. Here, we introduce a new technique for debiasing the local estimates, which leads to both theoretical and empirical improvements in the convergence rate of distributed second order methods. Our technique has two novel components: (1) modifying standard sketching techniques to obtain what we call a surrogate sketch; and (2) carefully scaling the global regularization parameter for local computations. Our surrogate sketches are based on determinantal point processes, a family of distributions for which the bias of an estimate of the inverse Hessian can be computed exactly. Based on this computation, we show that when the objective being minimized is l2-regularized with parameter ! and individual machines are each given a sketch of size m, then to eliminate the bias, local estimates should be computed using a shrunk regularization parameter given by (See PDF), where d(See PDF) is the (See PDF)-effective dimension of the Hessian (or, for quadratic problems, the data matrix).more » « less
-
Given only a finite collection of points sampled from a Riemannian manifold embedded in a Euclidean space, in this paper we propose a new method to numerically solve elliptic and parabolic partial differential equations (PDEs) supplemented with boundary conditions. Since the construction of triangulations on unknown manifolds can be both difficult and expensive, both in terms of computational and data requirements, our goal is to solve these problems without a triangulation. Instead, we rely only on using the sample points to define quadrature formulas on the unknown manifold. Our main tool is the diffusion maps algorithm. We re-analyze this well-known method in a variational sense for manifolds with boundary. Our main result is that the variational diffusion maps graph Laplacian is a consistent estimator of the Dirichlet energy on the manifold. This improves upon previous results and provides a rigorous justification of the well-known relationship between diffusion maps and the Neumann eigenvalue problem. Moreover, using semigeodesic coordinates we derive the first uniform asymptotic expansion of the diffusion maps kernel integral operator for manifolds with boundary. This expansion relies on a novel lemma which relates the extrinsic Euclidean distance to the coordinate norm in a normal collar of the boundary. We then use a recently developed method of estimating the distance to boundary function (notice that the boundary location is assumed to be unknown) to construct a consistent estimator for boundary integrals. Finally, by combining these various estimators, we illustrate how to impose Dirichlet and Neumann conditions for some common PDEs based on the Laplacian. Several numerical examples illustrate our theoretical findings.more » « less
-
We consider the problem of estimating the structure of an undirected weighted sparse graphical model of multivariate data under the assumption that the underlying distribution is multivariate totally positive of order 2, or equivalently, all partial correlations are non-negative. Total positivity holds in several applications. The problem of Gaussian graphical model learning has been widely studied without the total positivity assumption where the problem can be formulated as estimation of the sparse precision matrix that encodes conditional dependence between random variables associated with the graph nodes. An approach that imposes total positivity is to assume that the precision matrix obeys the Laplacian constraints which include constraining the off-diagonal elements of the precision matrix to be non-positive. In this paper we investigate modifications to widely used penalized log-likelihood approaches to enforce total positivity but not the Laplacian structure. An alternating direction method of multipliers (ADMM) algorithm is presented for constrained optimization under total positivity and lasso as well as adaptive lasso penalties. Numerical results based on synthetic data show that the proposed constrained adaptive lasso approach significantly outperforms existing Laplacian-based approaches, both statistical and smoothness-based non-statistical.more » « less
An official website of the United States government

