Utilizing metal–organic frameworks (MOFs) as reinforcing fillers for polymer composites is a promising strategy because of the low density, high specific modulus, and tunable aspect ratio (AR). However, it has not been demonstrated for the MOF-reinforced polymer composite using MOFs with high AR and polymer-grafted surface, both of which are extremely important factors for efficient load transfer and favorable particle–matrix interaction. To this end, we designed an MOF–polymer composite system using high AR MOF PCN-222 as the mechanical reinforcer. Moreover, we developed a synthetic route to graft poly(methyl methacrylate) (PMMA) from the surface of PCN-222 through surface-initiated atomic transfer radical polymerization (SI-ATRP). The successful growth of PMMA on the surface of PCN-222 was confirmed via proton nuclear magnetic resonance and infrared spectroscopy. Through thermogravimetric analysis, the grafting density was found to be 0.18 chains/nm2. The grafted polymer molecular weight was controlled ranging from 50.3 to 158 kDa as suggested by size exclusion chromatography. Finally, we fabricated MOF–polymer composite films by the doctor-blading technique and measured the mechanical properties through the tension mode of dynamic mechanical analysis. We found that the mechanical properties of the composites were improved with increasing grafted PMMA molecular weight. The maximum reinforcement, a 114% increase in Young’s modulus at 0.5 wt % MOF loading in comparison to pristine PMMA films, was achieved when the grafted molecular weight was higher than the matrix molecular weight, which was in good agreement with previous literature. Moreover, our composite presents the highest reinforcement measured via Young’s modulus at low weight loading among MOF-reinforced polymer composites due to the high MOF AR and enhanced interface. Our approach offers great potential for lightweight mechanical reinforcement with high AR MOFs and a generalizable grafting-from strategy for porphyrin-based MOFs.
more »
« less
Effect of Filler–Polymer Interface on Elastic Properties of Polymer Nanocomposites: A Molecular Dynamics Study
A coarse-grained model has been built to study the effect of the interfacial interaction between spherical filler particles and polymer on the mechanical properties of polymer nanocomposites. The polymer is modeled as bead-spring chains, and nano-fillers grafted with coupling agent are embedded into the polymer matrix. The potential parameters for polymer and filler are optimized to maximally match styrene-butadiene rubber reinforced with silica particles. The results indicated that, to play a noticeable role in mechanical reinforcement, a critical value exists for the grafting density of the filler–polymer coupling agent. After reaching the critical value, the increase of grafting density can substantially enhance mechanical properties. It is also observed that the increase of grafting density does not necessarily increase the amount of independent polymer chains connected to fillers. Instead, a significant amount of increased grafting sites serve to further strengthen already connected polymer and filler, indicating that mechanical reinforcement can occur through the locally strengthened confinement at the filler–polymer interface. These understandings based on microstructure visualization shed light on the development of new filler polymer interfaces with better mechanical properties.
more »
« less
- Award ID(s):
- 1650460
- PAR ID:
- 10079322
- Date Published:
- Journal Name:
- Tire science & technology
- Volume:
- 45
- Issue:
- 3
- ISSN:
- 1945-5852
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Macromolecular architecture is a critical parameter when tuning polymer material properties. Although the implementation of non-linear polymers in different applications has grown over the years, polymer grafted surfaces such as nanoparticles have traditionally been composed of linear thermoplastic polymers, with a limited number of examples demonstrating a diversity in polymer architectures. In an effort to combine polymer architecturally dependent material properties with polymer grafted particles (PGPs), as opposed to conventional methods of tuning polymer grafting parameters such as the number of chains per surface area (i.e., polymer graft density), a series of bottlebrush grafted particles were synthesized using surface-initiated ring-opening metathesis polymerization (SI-ROMP). These bottlebrush PGPs are composed of glassy, semi-crystalline, and elastomeric polymer side chains with controlled backbone degrees of polymerization (Nbb) at relatively constant polymer graft density on the surface of silica particles with diameters equaling approximately 160 or 77 nm. Bottlebrush polymer chain conformations, evaluated by measuring the brush height of surface grafted polymer chains in solution and the melt, undergo drastic changes in macromolecular dimensions in different environments. In solution, brush heights increase linearly as a function of Nbb, consistent with fully stretched chains, which is confirmed using cryogenic transmission electron microscopy (Cryo-TEM). Meanwhile, brush heights are consistently at a minimum in the melt, indicative of chains collapsed on the particle surface. The conformational extremes for grafted bottlebrush polymers are unseen in any linear polymer chain systems, highlighting the effect of macromolecular architecture and surface grafting. Bottlebrush grafted particles are an exciting class of materials where diversifying polymer architectures will expand PGP material design rules that harness macromolecular architecture to dictate properties.more » « less
-
To push upper boundaries of thermal conductivity in polymer composites, understanding of thermal transport mechanisms is crucial. Despite extensive simulations, systematic experimental investigation on thermal transport in polymer composites is limited. To better understand thermal transport processes, we design polymer composites with perfect fillers (graphite) and defective fillers (graphite oxide), using polyvinyl alcohol (PVA) as a matrix model. Measured thermal conductivities of ~1.38 ± 0.22 W m−1K−1in PVA/defective filler composites is higher than those of ~0.86 ± 0.21 W m−1K−1in PVA/perfect filler composites, while measured thermal conductivities in defective fillers are lower than those of perfect fillers. We identify how thermal transport occurs across heterogeneous interfaces. Thermal transport measurements, neutron scattering, quantum mechanical modeling, and molecular dynamics simulations reveal that vibrational coupling between PVA and defective fillers at PVA/filler interfaces enhances thermal conductivity, suggesting that defects in polymer composites improve thermal transport by promoting this vibrational coupling.more » « less
-
Polymer matrix composites have been used extensively in the aerospace and automotive industries. Nevertheless, the growing demand for composites raises concerns about the thermal stability, cost, and environmental impacts of synthetic fillers like graphene and carbon nanotubes. Hence, this study investigates the possibility of enhancing the thermomechanical properties of polymer composites through the incorporation of agricultural waste as fillers. Particles from walnut, coffee, and coconut shells were used as fillers to create particulate composites. Bio-based composites with 10 to 30 wt.% filler were created by sifting these particles into various mesh sizes and dispersing them in an epoxy matrix. In comparison to the pure polymer, DSC results indicated that the inclusion of 50 mesh 30 wt.% agricultural waste fillers increased the glass transition temperature by 8.5%, from 55.6 °C to 60.33 °C. Also, the TGA data showed improved thermal stability. Subsequently, the agricultural wastes were employed as reinforcement for laminated composites containing woven glass fiber with a 50% fiber volume fraction, eight plies, and varying particle filler weight percentages from 0% to 6% with respect to the laminated composite. The hybrid laminated composite demonstrated improved impact resistance of 142% in low-velocity impact testing. These results demonstrate that fillers made of agricultural wastes can enhance the thermomechanical properties of sustainable composites, creating new environmentally friendly prospects for the automotive and aerospace industries.more » « less
-
Reinforcing fillers are necessary in rubber compounding to aid in enhancing the mechanical properties of the compound for various applications. Carbon black (CB) is currently the most common reinforcing filler used in tire compounding. Lignin, an amorphous polyphenolic material derived from plants and a by-product of the pulp and paper industry, is also an attractive material that can serve as a dispersant and as a reinforcing filler. This paper evaluates the interactions between styrene-butadiene rubber and reinforcing fillers with an electron-rich π- system, such as lignin and CB, in the presence of a graft copolymer (PB-g-PPFS) of PB and electron-deficient 2,3,4,5,6-pentafluorostyrene (PFS). The interactions are attributed to areneperfluoroarene interactions between the electron-deficient π-system of the polyperfluoroarene grafts and the electron-rich π-system of lignin and/or CB particles. The effects of improved fillerrubber interactions on mechanical properties and dynamic mechanical properties are analyzed. This paper will demonstrate the use of PB-g-PPFS as a coupling agent in rubber compounds to enhance the interaction between the filler, lignin and lignin-carbon black hybrid filler, and the rubber matrix to achieve a reduction in the hysteresis loss and enhanced filler dispersion.more » « less
An official website of the United States government

