While considerable progress has been made in simulating the overall seismic response of steel structures using nonlinear response history (dynamic) analysis, techniques to simulate fracture propagation under large scale inelastic cyclic loading are not as well developed. This is despite the fact that fracture is often a critical limit state that can precipitate structural failure and collapse. To address this, a new ductile damage-based cohesive zone model is presented. The proposed model is an extension of the established continuum-based local or micromechanical ductile fracture models for evaluating ultra-low cycle fatigue in structural steels. This model is implemented in the finite element program WARP3D, and evaluated against tests of notched bars that fail by ductile crack propagation. The preliminary results indicate that the model is an effective tool for predicting ductile fracture initiation and propagation in structural steels subjected to monotonic and cyclic large scale inelastic loading. Implications of this for characterizing the post-fracture response of structural steel components are discussed, along with limitations of the research.
more »
« less
COMPUTATIONAL SIMULATION OF DUCTILE FRACTURE IN BUCKLING RESTRAINED BRACES
Since their first use in Japan about thirty years ago, Buckling Restrained Braces (BRBs) have been widely implemented in steel-framed buildings throughout the world. To date, most of the development and validation of BRB ductility has relied extensively on testing of full-scale braces under cyclic loading since no fracture evaluation method based on underlying micromechanics is currently available. Therefore, research is currently being undertaken to develop, validate and apply detailed finite element models to computationally simulate ductile fracture initiation and propagation in BRBs. As a part of this research, this paper presents an evaluation methodology of ductile fracture initiation using an Ultra-Low Cyclic Fatigue criterion, referred to as the Stress Weighted Damage Model (SWDM), along with detailed finite element analysis of BRBs.
more »
« less
- Award ID(s):
- 1634291
- PAR ID:
- 10079375
- Date Published:
- Journal Name:
- Proceedings of the U.S. National Conference on Earthquake Engineering
- ISSN:
- 0270-949X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
While considerable progress has been made in simulating the overall seismic response of steel structures using nonlinear response history (dynamic) analysis, techniques to simulate fracture propagation under large scale inelastic cyclic loading are not as well developed. This is despite the fact that fracture is often a critical limit state that can precipitate structural failure and collapse. To address this, a new ductile damage-based cohesive zone model is presented. The proposed model is an extension of the established continuum-based local or micromechanical ductile fracture models for evaluating ultra-low cycle fatigue in structural steels. This model is implemented in the finite element program WARP3D, and evaluated against tests of notched bars that fail by ductile crack propagation. The preliminary results indicate that the model is an effective tool for predicting ductile fracture initiation and propagation in structural steels subjected to monotonic and cyclic large scale inelastic loading. Implications of this for characterizing the post-fracture response of structural steel components are discussed, along with limitations of the research.more » « less
-
While considerable progress has been made in simulating the overall seismic response of steel structures using nonlinear response history (dynamic) analysis, techniques to simulate fracture propagation under large scale inelastic cyclic loading are not as well developed. This is despite the fact that fracture is often a critical limit state that can precipitate structural failure and collapse. To address this, a new ductile damage-based cohesive zone model is presented. The proposed model is an extension of the established continuum-based local or micromechanical ductile fracture models for evaluating ultra-low cycle fatigue in structural steels. This model is implemented in the finite element program WARP3D, and evaluated against tests of notched bars that fail by ductile crack propagation. The preliminary results indicate that the model is an effective tool for predicting ductile fracture initiation and propagation in structural steels subjected to monotonic and cyclic large scale inelastic loading. Implications of this for characterizing the post-fracture response of structural steel components are discussed, along with limitations of the research.more » « less
-
Mass timber buildings are gaining popularity in North America as a sustainable and aesthetic alternative to traditional construction systems. However, several knowledge gaps still exist in terms of their expected seismic performance and plausible hybridizations with other materials, e.g. steel energy dissipators. This research explores the potential use of mass plywood wall panels (MPP) in spine systems using steel buckling-restrained braces (BRBs) as energy dissipators. The proposed BRB-MPP spine assembly makes up the lateral load-resisting system of a three-story mass-timber building segment that will be tested under cyclic quasi-static loading at Oregon State University. The specimen geometry and material properties result in BRBs that are shorter and of smaller core area than in most common steel structural applications. Small BRBs are prone to exhibit a hardened compressive response and fracture due to ultra-low-cycle fatigue when subjected to repeated cycles of large strain amplitude. These issues, along with the limited availability of test data, make small BRBs difficult to model. To support the experimental testing program, a material model with combined kinematic and isotropic hardening is calibrated against the available experimental data for three BRB specimens to estimate the behavior of BRBs of short length (≤3,500 mm [138 in]) and small core area (≤2,600 mm2 [4 in2]), similar to the ones designed for the test specimen. The calibrated model is used to predict the behavior of the BRB-MPP spine experiment.more » « less
-
null (Ed.)Abstract A micromechanics-based ductile fracture initiation theory is developed and applied for high-throughput assessment of ductile failure in plane stress. A key concept is that of inhomogeneous yielding such that microscopic failure occurs in bands with the driving force being a combination of band-resolved normal and shear tractions. The new criterion is similar to the phenomenological Mohr–Coulomb model, but the sensitivity of fracture initiation to the third stress invariant constitutes an emergent outcome of the formulation. Salient features of a fracture locus in plane stress are parametrically analyzed. In particular, it is shown that a finite shear ductility cannot be rationalized based on an isotropic theory that proceeds from first principles. Thus, the isotropic formulation is supplemented with an anisotropic model accounting for void rotation and shape change to complete the prediction of a fracture locus and compare with experiments. A wide body of experimental data from the literature is explored, and a simple procedure for calibrating the theory is outlined. Comparisons with experiments are discussed in some detail.more » « less
An official website of the United States government

