While considerable progress has been made in simulating the overall seismic response of steel structures using nonlinear response history (dynamic) analysis, techniques to simulate fracture propagation under large scale inelastic cyclic loading are not as well developed. This is despite the fact that fracture is often a critical limit state that can precipitate structural failure and collapse. To address this, a new ductile damage-based cohesive zone model is presented. The proposed model is an extension of the established continuum-based local or micromechanical ductile fracture models for evaluating ultra-low cycle fatigue in structural steels. This model is implemented in the finite element program WARP3D, and evaluated against tests of notched bars that fail by ductile crack propagation. The preliminary results indicate that the model is an effective tool for predicting ductile fracture initiation and propagation in structural steels subjected to monotonic and cyclic large scale inelastic loading. Implications of this for characterizing the post-fracture response of structural steel components are discussed, along with limitations of the research.
more »
« less
Ductile Fracture in Plane Stress
Abstract A micromechanics-based ductile fracture initiation theory is developed and applied for high-throughput assessment of ductile failure in plane stress. A key concept is that of inhomogeneous yielding such that microscopic failure occurs in bands with the driving force being a combination of band-resolved normal and shear tractions. The new criterion is similar to the phenomenological Mohr–Coulomb model, but the sensitivity of fracture initiation to the third stress invariant constitutes an emergent outcome of the formulation. Salient features of a fracture locus in plane stress are parametrically analyzed. In particular, it is shown that a finite shear ductility cannot be rationalized based on an isotropic theory that proceeds from first principles. Thus, the isotropic formulation is supplemented with an anisotropic model accounting for void rotation and shape change to complete the prediction of a fracture locus and compare with experiments. A wide body of experimental data from the literature is explored, and a simple procedure for calibrating the theory is outlined. Comparisons with experiments are discussed in some detail.
more »
« less
- Award ID(s):
- 1932975
- PAR ID:
- 10297088
- Date Published:
- Journal Name:
- Journal of Applied Mechanics
- Volume:
- 89
- Issue:
- 1
- ISSN:
- 0021-8936
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
While considerable progress has been made in simulating the overall seismic response of steel structures using nonlinear response history (dynamic) analysis, techniques to simulate fracture propagation under large scale inelastic cyclic loading are not as well developed. This is despite the fact that fracture is often a critical limit state that can precipitate structural failure and collapse. To address this, a new ductile damage-based cohesive zone model is presented. The proposed model is an extension of the established continuum-based local or micromechanical ductile fracture models for evaluating ultra-low cycle fatigue in structural steels. This model is implemented in the finite element program WARP3D, and evaluated against tests of notched bars that fail by ductile crack propagation. The preliminary results indicate that the model is an effective tool for predicting ductile fracture initiation and propagation in structural steels subjected to monotonic and cyclic large scale inelastic loading. Implications of this for characterizing the post-fracture response of structural steel components are discussed, along with limitations of the research.more » « less
-
While considerable progress has been made in simulating the overall seismic response of steel structures using nonlinear response history (dynamic) analysis, techniques to simulate fracture propagation under large scale inelastic cyclic loading are not as well developed. This is despite the fact that fracture is often a critical limit state that can precipitate structural failure and collapse. To address this, a new ductile damage-based cohesive zone model is presented. The proposed model is an extension of the established continuum-based local or micromechanical ductile fracture models for evaluating ultra-low cycle fatigue in structural steels. This model is implemented in the finite element program WARP3D, and evaluated against tests of notched bars that fail by ductile crack propagation. The preliminary results indicate that the model is an effective tool for predicting ductile fracture initiation and propagation in structural steels subjected to monotonic and cyclic large scale inelastic loading. Implications of this for characterizing the post-fracture response of structural steel components are discussed, along with limitations of the research.more » « less
-
Since their first use in Japan about thirty years ago, Buckling Restrained Braces (BRBs) have been widely implemented in steel-framed buildings throughout the world. To date, most of the development and validation of BRB ductility has relied extensively on testing of full-scale braces under cyclic loading since no fracture evaluation method based on underlying micromechanics is currently available. Therefore, research is currently being undertaken to develop, validate and apply detailed finite element models to computationally simulate ductile fracture initiation and propagation in BRBs. As a part of this research, this paper presents an evaluation methodology of ductile fracture initiation using an Ultra-Low Cyclic Fatigue criterion, referred to as the Stress Weighted Damage Model (SWDM), along with detailed finite element analysis of BRBs.more » « less
-
The present study aims to characterize the microvoid sizes and their statistical distribution at the instance of fracture from the fracture surface of steel specimens. To this end, uniaxial tensile tests are conducted on circumferentially notched specimens made of 17-4 PH stainless steel and ASTM A992 high-strength structural steel. The fracture surfaces of the steel test specimens are studied using a digital microscope to quantify the statistical microvoid size distribution. Furthermore, the evaluated microvoid sizes of different fracture locations are mapped with the stress and strain fields. Finally, based on the experimentally evaluated microvoid sizes, an uncoupled fracture model was adopted to predict the fracture displacement and location of ductile fracture initiation in the fractured specimens. The fracture displacements predicted using the calibrated uncoupled fracture model are within the acceptable limit. The fracture initiation locations coincided with the peak strain-averaged stress triaxiality in the fracture specimens.more » « less
An official website of the United States government

